AD=A0B0 395 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO==EYC F/G 5/2
THE DESIGN AND IMPLEMENTATION OF A PEDAGOGICAL RELATIONAL DATAB==ETC(U)
DEC 79 M A ROTH

UNCLASSIFIED AFIT/GCS/EE/79=14

e i L L N

- ik
e i o T o

AFIT/GCS/EE/79-14

Z)

] THE ,ESIGN AND IMPLEMENTATION OF ‘
\ A PEDAGOGICAL‘RELATIONAL DATABASE §XSTEM

(1 /L ;) LL o THESTS, ;
//.,f, 'E?ET/GCS/EENQ 14; 1{ Lgark A./Roth)

USAF

e T

SV

AFIT/GCS/EE/79-14

THE DESIGN AND IMPLEMENTATION OF
A PEDAGOGICAL RELATIONAL DATABASE SYSTEM

THESIS

Presented to the Faculty of the School of Engineeringv/
of the Air Force Institute of Technology a
Air University (ATC)

In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

j by

Mark A. Roth
2Lt USAF

: l
.H Graduate Computer Systems . [%

<
:

i 15 December 1979

PREFACE

The need for a good pedagogical tool in the area of database systems
has existed for some time. Although commercial database management systems
could be used, their complexity and lack of flexibility precludes their
use as a good instructional tool. Thus, Dr. Thomas Hartrum, on the faculty
of the AFIT/EN Electrical Engineering department, proposed that such a
tool be developed as a master's degree thesis. I undertook this project
with the goal of handing him a fully operational system at termination.
However, since a relational system was being designed to provide the neces-
sary flexibility, the problem of efficiency in relational systems became a
high priority. Thus we decided that the best approach would be to explore
the efficiency problem, and present only the front end of the system as my
final product. Hopefully, through well-structured design, coding, and
documentation, the system can be easily finished.

Many thanks are due to the members of my thesis committee for their
helpful comments both during the development and in the writing of this
document. They were advisor, Dr. Thomas Hartrum, and committee members,
Dr. Alan Ross, Dr. James Rutledge, and Dr. Kenneth Melendez. Thanks are
also due to Capt Brian Boesch for his many hours of help with the computer
system I used. He is largely responsible for the material in Appendix A.
In this vein, thanks are also due the AFIT/ENE technicians: Robert Durham,
Dan Zombon, Orville Wright, and Richard Wager. Lastly, I would like to
thank 2Lt Pete Raeth for implementing the code in the RUN module.

i1

PREFACE
. LIST OF
i LIST of

I.

II.

I1I.
)

CONTENTS

FIGURES . . . & v ¢ ¢ v ¢t v o o v o o o o o e e s e
3

ABSTRACT. . & v v v 4 v v e o o v e o o o o o o o o o o o oo o

INTRODUCTION v ¢ v ¢ o v e e e o e s o o o o o o

BACKGROUND v v v v v et v o v v v o o
STATEMENT OF PROBLEM o e e e e
SCOPE . & & v v i e e e e e e e e e e e e e e e e e
GENERAL APPROACH . . . & v v ¢ ¢ v ¢ ¢ o o o o o o o
SEQUENCE OF PRESENTATION v v ¢ ¢ ¢ o o o &

HARDWARE CONSIDERATIONS e v e e e e e

MACHINE TYPE ¢« ¢ ¢« ¢ o ¢ o & ¢ oo e o s
OPERATING SYSTEM ¢ ¢ v ¢ ¢ ¢ ¢ e o e o o o &
SUMMARY v v oo 0. o v e e e e e e

THEORETICAL DEVELOPMENT o ¢« v v o ¢ v ¢ o o &

ADVANTAGES AND DISADVANTAGES OF RELATIONAL
SYSTEMS . . &t v ¢ vt ottt e e e e e e e e e e e
Simplicity of Data Structure Description
Generality of Data Description and
Manipulation
Flexibility and Data Independence
Fourth Normal Form and Redundancy of Data
Structuret t i e e e e e s e e e
Data Manipulation vs. Data Management
User Expectations ¢« ¢« ¢ ¢ ¢ o v o o @
SELECTION OF THE DATA MANIPULATION AND
DEFINITION LANGUAGE v ¢« ¢ v ¢ ¢ o o o &
Definition of the Algebra and Calculus
Relational Algebra ¢ ¢ v ¢ ¢ o o
Relational Calculus . . . ¢« « ¢« ¢ ¢ ¢ o ¢ o o ¢ &
Example . . & ¢ ¢ v o o e e o e e s e e e e .
Algebra vs. Calculus e e e e e e e e
Ease of Learning « ¢ ¢« ¢« ¢ ¢ ¢ ¢ v o
Ease of USe . & & ¢ &+ & ¢ o o o o o o o o o o o
Completeness . . . « ¢ o ¢ v ¢« o o o o o s o o o
Ease of Implementation ¢ .« .
Description of the Relational Algebra Based
Design e e e e e e e e e e

114

'l 4

SOLUTIONS TO THE PROBLEMS OF RELATIONAL
DATABASES . . &« ¢ ¢ ¢ v ¢« ¢ ¢ ¢ o o o & e s s e e
Integrity ¢ v i i e 0. . .
Redundancy of Data and Efficiency at. the
Storage Representation Level
Definitions ¢ ¢« o ¢ ¢ . . .
Implementation Technique for Images
Implementation Technique for Links
Implementation Technique for a Combined
Access Path Structure
Generalization of the Combined Access
Path Structure ¢« ¢« v ¢ ¢ ¢ o &
SUMMArY . ¢ v ¢ ¢ « o o o o o o 2 s o o o o »
Efficiency at the Conceptual Level
SUMMARY ¢« v ¢ v ¢ o e e e e e e e e e

Iv. SYSTEM DEVELOPMENT ¢ v ¢ v e v v o v o o

SYSTEM DESIGN. . . . & & ¢ v & i e e e e e o o o o o
Initial Development ¢ ¢ ¢ ¢ ¢ ¢ o o &
Future Modifications« . . ¢« ¢ ¢« ¢« « « .

IMPLEMENTATION TECHNIQUES AT THE DATA ENTRY

LEVEL. . &« & & ¢ i e ot i e e i s e e e e e e e e e
The Abundance of Commands « « + ¢« « « & &
Error Detection/Correction ¢ « ¢ ¢« « &

IMPEEEENTATION TECHNIQUES AT THE CONCEPTUAL

LEVEL. & & & ¢ v i ettt e e e e e e e e e e e e
The TREE Module & & ¢ ¢ & ¢ o ¢ ¢ o = o &
The SPLITUP Module . . . & v & ¢ ¢ ¢« ¢ « ¢ o o o @
The OPTIMIZE Module &« ¢« ¢ ¢ ¢ ¢ ¢ ¢ « o « &

The COMBOOL Algorithm
The SIMSEL Algorithm « ¢« ¢ ¢« ¢« o & .
The SELDOWN and PROJDOWN Algorithms
The SELDOWN Algorithm
Notes of the Efficiency of Moving SELECTs
The PROJDOWN Algorithm « . .
Modification of the Transformation
Algorithms. . . .« . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o & .« o
The OPTIMIZE Algorithm « « « . « &
The RUN Module ¢« ¢« v ¢ ¢ o & & e e e e e
The RUN Algorithm ¢ v ¢ ¢ o
IMPLEMENTATION TECHNIQUES AT THE SYSTEM LEVEL

V. VERIFICATION AND VALIDATION c s e e e e e
VI. CONCLUSION+ v v v v v o o e o o o
OVERVIEW o i v v i i e e v et e oo o o o
FUTURE RECOMMENDATIONS
FINAL COMMENT

BIBLIOGRAPHY.

~ APPENDIX A: A COMMUNICATION NETWORK BETWEEN THE ALTAIR 8080
< AND THE INTEL 8080 MICROPROCESSOR SYSTEMS 90

APPENDIX B: USER'S GUIDE e e e e e e .. 110

APPENDIX C: BASIC PROCEDURES FOR IMPLEMENTING CODD S RELATIONAL
ALGEBRA o0 0. . e e e e e 136

VOLUME II: PROGRAM LISTINGS AND DOCUMENTATION (Available from AFIT/ENG)

|
}
i 3 LIST OF FIGURES
E .
{ Figure . Page
! 1. Sample data depicted with three models 2
3 2. The three levels of a database system 13
y
, 3. Image implementation for I(PART(CITY)) 28]
i
, 4. Link implementation of L(PART(P#),SP(P#)); link
! occurrence for domain value P2 « ¢« « ¢« . 29]
; 5. Combined implementation of 1ink L(PART(P#),SP(P#)), ‘
‘ and the images I(PART(P#)) and I(SP((P#)). 30 i
6. Implementation of the generalized access path; §
example for four relations on domain P# 33 ;
7. A1l existing binary links baseon P# 33 g
8. The basic organization of the query optimizer 35 %.
9, Systemdesign . « + v v v 4 4 v e 4 e e e e .. 4 %
’ 10. Multi-level user command system e 49 A
11. Detail of EXECUTE module. ¢ ¢« ¢« ¢ ¢« ¢ ¢ &« & - X |
N 12. (a) Set operations on SELECTs of the same relation R
. (b) Transformation of the tree in (a) into a single
.’I i ' SELECT . . . AL S AL L S o 6 e & o e e o o o 59
T 13. (a) The tree for a user query. (b) The tree for a
: transformation of the query in@. 62
14. ﬁa) Further transformation on the tree of Figure 13(b) i
b) Final optimized tree for the query of Figure 13(a) . . 67
15. éa) UP-rules applied to the tree in Fi?ure 14(b).
: b) DOWN-rules applied to the tree in (a). 74
16. An operator tree on the relations R1, R2, R3 75
fi 17. ia; UP-rules applied to the tree in Fi?ure 16 j
j b) DOWM-rules applied to the tree in{a) 76
n
| 18. Relationship among the three levels of optimizer
; and the transformations P -
D A-1. Schematic of RS-232 switch box . . . « » |
B-1. Multi-level user command system P 8 5 |
iiii vi ;

Table
II

I
IV

VI

VII
VIII
IX

LIST OF TABLES

Page
Idempotency Laws of Relational Algebra 38
Simplification Laws of Boolean Algebra 38

Distribution Laws for Moving SELECTs Down Trees 39
Distribution Laws for Moving PROJECTs Down Trees 40

Rules for Coordinating Sort Order and

Implementing Operators -~ UP-rules 41
Rules for Coordinating Sort Order and

Implementing Operators -~ DOWN-rules 42
Relations Used in Tests of Optimizers 81

Expressions Used as Queries in Testing Optimizers82

Times Taken to Answer the Queries of Table VIII 84

-

ABSTRACT

A relational database system was designed with the goal of obtain-
ing as near optimal behavior from the system as possible. In addition,
the database was to be implemented as a general purpose system but with
specific provisions for its use as a pedagogical tool for teaching data-
base management and manipulation.

Toward these goals, investigatdqns were made into previous
theoretical studies in the literature? The advantages and disadvan-
tages of relational systems were explored, and based on a certain
criteria a relational algebra was chosen as the basis for the data
manipulation and definition language., Solutions to the problems of
relational databases, inclggjgga%ﬁf;;;ity, redundancy, and efficiency,

™

wergﬁgig§gnted»%nﬂtﬁ{§ context.
ith this background, a top-down structured design of the system

was completed. Techniques used to manage data entry; i.e., the user
interface, and techniques to transform those inputs in order to opti-
mize their execution were developed and implemented. _These transforma-
tions formed the basis of an automatic programmer used to analyze and
efficiently refine high level query specifications supplied by the user.
This approach sought to minimize query response time and space utiliza-
tion by: (1) performing global query optimization, and (2) coordinating

sort orders in temporary relations.

vifi

THE DESIGN AND IMPLEMENTATION OF A PEDAGOGICAL

RELATIONAL DATABASE SYSTEM

I INTRODUCTION

BACKGROUND
The relational model of data is a concept that was formalized by
E.F. Codd (Ref 1) n 1970 and has been gradually gaining acceptance in

the research community. Prior to 1970, database implementations were

. s e R

generally based on one of two models, the hierarchical data mode’ ind
the network data model. An example of the hierarchical model appe-is
in Figure 1(a). In this example, parts records consisting of a part
number, name, color, weight and city can have, subordinate to them,

zero or more supplier records consisting of a supplier number, name,

status, city and quantity of the part being supplied. One of the major
drawbacks of this model of thedatais the inherent redundancy of informa-
tion. Note in the example how the same information for suppliers is
repeated many times throughout the hierarchy. In addition similar

queries about the data cannot necessarily be formulated in a similar

manner. In the example it would be easy to find all suppliers of a
given part by doing a simple lookup of that part, but finding all the
parts supplied by a particular supplier forces a scan of the entire

hierarchy, searching for all occurrences of the particular supplier.

A solution to some of the problems of the hierarchical data mouel

ﬁ: was found in the network data model. The network model uses sets and

1ink constructs to indicate relationships among the data. The example

data as it would look in the network model is shown in Figure 1(b).

(o] e | wed 12 [conaon] (2] s | Groem 117 Pui |

1 ith London S: Jones | 10| Paris [
[5t] o [} E l12r15mithT2loll!ondonl 200400

[s2] sones 10| Paris | 300 [s3] siake [30] Paris | jo_orl

[pa] screw [Biue [17] Rome | [pa] screw | Red [14] London |

['s1] smith [20] London | 400 |

(a) Sample data in hierarchical form (parts superior
to suppliers)

~ 2 E\
~,
T e =P e

(b) Sample data in network form.

S| S# | SNAME | STATUS CITY. sp| s | P2 | aTY
S1 Smith 20 London | S1 | P 300
Ss2 Jones 10 Paris s1 P2 200
s3 Blake 30 Paris St 3 400
s2{ P 300 4
P| P& | PNAME | COLOR | WEIGHT cITY S2 | P2 | 400
Pl | Nut Red 12 London 3P| 20 b
P2 | Bolt Green 17 Paris "
P3 Screw Blue 17 Rome
P4 | screw Red 14 London

(c) Sample data in relational form.

Sample data depicted with three models (Ref 4).
2

Figure 1.

Here queries are answered by searching throth the paths (indicated by
arrows) until the proper information has been reached. Thus, although
the problems of the hierarchical model no longer prevéil, the complexity
of searching through the network causes other problems. One of the big-
gest ones is the lack of data independence. In order to be able to use
the network model, the user must know the structure of the various net-
works he must work with, and write his application programs accordingly.
If there is some need to change the database, either by deleting or by
adding new data or relationships, the user may have to rewrite his pro-

grams to match the new model of the data.

Thus when Codd introduced the relational model, the user community
applauded it for its simplicity, completeness, and ability to provide ;_
excellent data independence. The example data in relational form is
shown in Figure 1{(c). The three relations PART, SUPPLIER, and SP
respectively denote a relation of parts records (or tuples), a relation
of supplier records, and a relation of supplier-part reccrds indicating
; which suppliers supply which parts in what quantities.

Although university implementations such as PRTV and MacAIMS (Ref
2) are becoming commonplace, and even a few commercial implementations
have appeared, relational systems in general have been criticized be-
cause of their comparative slowness and inefficiency when actually
impiemented. Thus, new research was stimulated with the purpose of

eliminating or at least mitigating the effects of those inefficiencies.

Research has concentrated in both the hardware and software design
ﬂ areas. Hardware improvements are concerned with reducing the time and

space needs of the typically software-laden database management system

which, being large in size and complex in structure, has been overtaxing

3

~

0 B

the host hardware, and overshadowing the host operating system. Most
of the effort in this area has been made with large to very large data-
bases in mind, which is, of course, where the software systems have been
straining the most (Ref 3:414).

In contrast, software research has focused on all facets of rela-
tional database systems, where new algorithms and structures are being
developed to increase efficiency for large as well as small systems.
Some of this research is being done in conjunction with the design of
the database computers, but most of the work is being done in improving
the systems that run on current hardware configurations. The growing
need for simple and efficient database systems to run on the prolifera-
tion of mini-, micro~, and mainframe computers in the business and
government arena will demand that researchers continue to design and
improve systems to run on these architectures. A

There is also a great need for database systems in the educational
environment. The vast majority of courses in the database area'offer a
basic textbook, "this is how it works in theory", approach, with little,
if any, hands-on experience afforded the future database manager or user.
Although there are many existing database systems which could be used to
teach database manipulation with a fair degree of success, the facilities
for allowing students to experience the role of database administrator

are lacking.

STATEMENT OF PROBLEM

Thus, the purpose of this thesis is to solve two problems. First,
a relational database system is to be deéigned using the best known

methods as well as any new methods to exact as near possible optimum

e T e s e

behavior from the system. Second, the database is to be implemented
as a general purpose system but with specific provisions for its use as

a pedagogical tool for teaching database management and manipulation.

SCOPE

The original scope of this thesis was to design and implement a
complete stand-alone database system, including a comprehensive user
interface, optimization procedures, and a complete physical storage
manager. After the design phase was completed, it became apparent that
the implementation phase would exceed the available time. Therefore,
it was decided to leave out modules of the system which dealt with the
actual processing of data in the form of relations. However, due to the
top-down modular design of the system, these modules should be easy to

interface to the existing system once they are designed.

GENERAL APPROACH

The first step consisted of an extensive literature search to
determine what research had already been done in the area of relational
databases. An effort was made to collect information from ail areas
pertaining to database systems: query language design, query evaluation,
storage structures, retrieval algorithms, and human engineering. A
1ist of all sources accessed is presented in the bibliography.

In order that a direction be established for the rest of the
thesis, the next step involved the selection of a data manipulation and
definition language (DML and DDL). A wide variety of such languages
have been used in past and present implementations, and many others have
been defined in theoretical investigations. However, there are basi-

cally two types of relationally-oriented languages which form the basis

i st st

for most database languages. These are those based on either a relational
algebra or a relational calculus. As described in Chapter III, considera-
tion of certain criteria resulted in the selection of a relational algebra

and thus a target DML and DDL was designed with that decision in mind.

The next step integrated the ideas obtained through the literature
search and the decision to use a relational algebra, in an overall system
design. A top-down modular design was used to allow straightforward im-
plementation as well as modification.

Based on the system design, modules were implemented in top-down
order, with the important lines of implementation done first (Refer to
Scope section). And finally, the completed modules were validated to
ensure their correctness of operation under all inputs, both as stand

alone modules and as an integrated system.

SEQUENCE OF PRESENTATION

The remainder of this thesis is broken into five chapters. Chapter
II describes the selection of the computer upon which to implement the
database system. Machine size and availability and operating system
features are discussed. Chapter III discusses various theoretical
developments in the design of the system. These include the advantages
and disadvantages of relational databases, the selection of the DML and
DDL, and a description of algorithms and heuristics available and
created to eliminate or at least mollify the disadvantages of the
relational systems.

Chapter IV is a description of the major decisions involved in the
development of the software system, highlighting the data structures and
algorithms having significant impact in this implementation. Prominent

0
Y™ il o o e e o 1 e DYV g SN

topics in this section include system design and data and control
structures used at the data entry, conceptual and system implementation
levels. Chapter V describes the validation of the system and Chapter VI

presents conclusions and recommendations.

U NP PO

II HARDWARE CONSIDERATIONS

This chapter describes the selection of the computer system which
was used as the development tool for implementation of the database sys-

tem. Both machine type and operating systems are discussed.

MACHINE TYPE

Because one of the primary goals of the database system was to
serve in a pedagogical environment, it was necessary to choose a machine
which would be freely available to students and which required little if
any, knowledge of machine architecture and operation. In addition, it
was desired that the system have interactive capabilities to provide
the user with a more flexible and intimate relationship with the data-
base.

Choices for an appropriate machine included a multi-access CDC/
Cyber 6600 and two 8080 based machines -- the INTEL 8080 system and the
ALTAIR 8800b system. The large CDC computer was eliminated as a viable
choice because of its already heavy use by the Wright-Patterson community
and its not uncommon habit of going down for extended periods of time.
In addition, the smaller machines could be made available on a full-
time basis for both development of the system and future use by student
users. The decision on which 8080 system to use was essentially
rendered academic by the design of a communications network allowing

complete portability of data and programs between machines. The methods

involved in this scheme are presented in Appendix A.

[VN s g

bu S~ -

OPERATING SYSTEM

One of the ways that machine communication was simplified was

through use of a common disk operating system: CP/M (Control Program

for a Microcomputer) (Ref 4), and a common high level operating system: UCSD

(University of California, San Diego) Pascal, Version II1.0 (Ref 5).
CP/M was chosen because it is an excellent vehicle for implementing
Pascal on a variety of machine architectures. (See Appendix A for more
details). Pascal was chosen as the implementation language for several
reasons. Most important is the block structured design of the language
allowing a smooth transition from a top;down design to the actual code.
Other reasons for choosing Pascal are its high degree of variable
typing and its wealth of control structures. The UCSD version of Pascal
is a widely used implementation among microcomputers, thus providing a
more portable system. Since all machine dependent features are imbedded
in CP/M, any code written with one UCSD Pascal system can be run on any
other. UCSD Pascal was also chosen because, by being designed for micro-
computers, it has a built-in capability for handling large programs with
features such as program segmentation and separately compiled procedures
and virtual memory using segment swapping. Although UCSD Pascal can run
completely in 48K bytes of main memory using the above features, it turns
out that the database system designed here required a minimum of 64K
bytes, due to compilation constraints and execution with large files.
Both random and sequential access to dual drive disks is available in
UCSD Pascal. Thus, the database system may reside on one disk so that
procedures may be swapped in and out of memory, and user data (relations)
may reside on the other disk. By simply switching user disks, data

space becomes virtually unlimited.

——

SUMMARY

The combination of a dedicated microprocessor system and the versi-
tality of the UCSD Pascal operating system and language proved to be a
windfall. Program design was easily modularized; modification and
testing of modules was simple and quick; segmentation, input/output, and
string manipulation were available, easy to learn, and easy to use. Al-
though Pascal exists on the CDC machine, it does so only in a batch
operating system. To be used properly in a pedagogical environment,

a database system must be interactive, allowing the student to create,

execute, and modify commands, and see the results immediately.

ITT THEORETICAL DEVELOPMENT

This chapter describes the work that was done pr%or to initial
system design. Through an extensive literature search an excellent
understanding of the advantagés and disadvantages of relational data-

base systems was obtained. By understanding the advantages and dis-

advantages of relational systems, the system design could capatilize

on the advantages while seeking to eliminate the disadvantages. A dis-
cussion of this occurs in the first section of this chapter.

In order to provide some direction to the system design, investi-

1 gation into a target data manipulation and definition language was

necessary. This enabled direction in the system design, considering

the various methods to make use of the advantages and at least mollify

the disadvantages of relational systems. By defining the target DML :
and DDL ahead of time, a definition of what the system should do was

' established and, consequently, the best methods could be used and/or

developed to accomplish that goal. The selection of the DML and DDL

is developed in the second section of this chapter.

The problems of relational systems, and possible solutions to]

those problems, have been "bantered back and forth" among experts in
the field ever since Codd introduced the concept. In light of the
target language described in the second section and the hardware con-
siderations of Chapter II, the experts' methods used in this thesis to
solve the problems of relational systems are presented in the third

section of this chapter.

1

T T A m—

ADVANTAGES AND DISADVANTAGES OF RELATIONAL SYSTEMS

This section points out the potential problems and advantages which
should be matters of consideration in the design of a relational model of
data. These include simplicity of the data structure description, gener-

ality of data description and'manipulation, flexibility and data indepen-

dence, fourth normal form and redundancy of data structure, data manipu-

lation vs. data management, and user expections (Ref 6).

Simplicity Of Data Structure Description

The aspect of the relational model of information most appealing
to the casual user is its simplicity. A single type of structure, with
a simple and clear organization, suffices for the storage of data, for
the system catalogs defining the (relational) data sets, for inverted
lists and indexes used for more efficient data retirieval, and the data
dictionary/directory. The simple data structure means there is only
one simple access method to understand. Relations are physically inde-
pendent of one another, facilitating relocation, segmentation, and
backup.

Part of the simplicity of the relational model results from the
omission of details relating to the performance of the data management
system and the storage of data. There are three levels of detail in a
database management system (Figure 2). The relational model addresses
mainly the conceptual level, with no specifications on the data entry
level or the storage representation level. While it is certainly

desirable to help the application programmer avoid these representation

details, other system designs have found that goal difficult to achieve
(Ref 6).

12

Data Entr

Level U§E§E1\\\ USE; 2
User/Conceptual Mapping
Conceptua] Data Model
Level
Conceptual/
internal mapping
Storage A
Representatiof LG
Level B 8iEiS

agement
ystem

Figure 2.

Generality of Data Description and Manipulation

The'three levels of a Database System

The generality of the relational model is another significant

advantage.

tion in a given collection of relations. The class is a very general
one; it includes all relafions which can be represented with relational
expression using as operands, the database relations.

7), the effort required to answer a query can frequently be estimated in

advance.

A further advantage of using relations for the basic data struc-
ture is the power of the general operationé which may be applied to the
sets of tuples.

sensible to have operations which perform the same action on each item

in the set.

managed by other systems.

13

To start with, the notion of Relational Completeness (Ref

1) specifies a class of queries which can be answered from the informa-

Since each relation is a set of related items, it is

This is more difficult for the complex data structures

Furthermore, (Ref

R e

Flexibility and Data Indepandence

In addition to simplicity and generality, the relational model
provides more flexibility than available before in other systems. Be-
cause relationships between information in tuples of different relations
(or distinct tuples in the sahe relation) are indicated implicitly by
identity of key values, adding new relationships or new data to existing
relationships is made easier. The model lends itself to easy extension
with new data manipulation functions, to non-procedural data manipula-
tions, and to the use of set operations.

The separation of relationship information from the information

describing entities is a further advantage for purposes of data security.

We can, for example, place restrictions on the salary relationship which
relates employees to the salary ranges without restricting access to the
relationship between employees and their employers, aésignments, and
active projects.

Although indicating relationships among tuples by key values does
indeed give a higher degree of independence of the relations, remember-
ing those implicit relationships may be difficult. For example, if a
network model (not to be confused with the network model of data) has a
relation of edges specified by From and To node identifiers, there are
implicit links from the edge relation to the node relation containing
the nodes of the network. The system catalogs must maintain a record
of these implicit links, which can cause problems in a large system.

Not only must the system remember relationships but it must also
maintain the integrity of the relationships, for example by preventing
the deletion of a tuple containing a key value which is referenced by
another tuple somewhere. These checks may be exceedingly complex and

difficult.

14

e o e AR e e 22
e b . .

o e i artin s e

Fourth Normal Form and Redundancy of Data Structure

Reducing a relation to Fourth Normal Form (See Ref 2:153-172),
while reducing the complexity of the information struéture by separating
information into related classes, introduces a considerable number of
key value references. Instead of being grouped into the record of the
| owner, the elements of a repeating group are placed in another relation
‘ with a domain of key references to the owner. Usually there are many
repetitions in these domains and it may be argued that this redundancy
of information wastes storage space. That argument is true only if the
relation is stored in the fully expanded form seen by the user, ignoring
the possibility of redundancy-removing data compression techniques in
the storage of the relations. Such redundancy removal techniques are
advocated in the ADMINS system (Ref 8) to allow efficient use of disk
storage without making the user's view of the data more complex. Expan- "
sion to fully redundant form may take place when a page of data is |
retrieved from the disks or when it is presented to the user or used

in selection operations.

Data Manipulation vs. Data Management

The relational model of data does not really simplify the problems
in a large database of storing and retrieving ten million records of
200 bytes each. These data management problems remain. A relational
model may help to segment the database into portions and to reduce the
physical linkages between files: But mainly, the relational systems

! are a new method of modeling data structures in a general and powerful

way.

15

a.

User Expectations

When a relational model is used for presenting data to a user, then
implemented with some shortcuts such as sorting the relations on the primary
key, the possibility that the user will be able to formulate two similar
commands, one of which will be done instantly (find keys 3-6) and one of
which will take a long time (find colors red-green), will become more
probable. Thus using a more powerful user language than the implementa-
tion really supports is likely to raise expectations beyond capabilities i
and result in disappointments. This is especially true with the new
operations such as the set operations and JOIN with which a user may not
be familiar.

The question of user expectations is particularly important in 1

the context of inquiry processing, since that application has both the

greatest potential and the greatest problems. Clearly, the power of the
relational systems is most evident for complex queries, particularly
those involving data from more than one information file (relation).

Yet, if the system maintains the tuples chained for efficient update of
the relations, context sensitive searches will be slow on all domains.
Correcting this is possible on any particular domain by sorting on that
domain but then searches on other domains will still be slow. Further-
more, if additional operations such as JOIN need to be done on domains
other that the current sort key, then the entire relation must be re-
sorted, a very time-consuming operation. Indexing every relation on
every domain would solve the a2ccess problem for queries, but then we have
the usual problems with the updating of relations and the creation of new
relations (with their indexes). Hence, with current hardware technology,
systems have usually taken some implementation short-cuts for a relational

model,

16

SELECTION OF THE DATA MANIPULATION AND DEFINITION LANGUAGE

This section examines the two types of relationally oriented data-
base languages, the relational algebra and the relational calculus.
First a short definition of each language type is presented. Then
the two language types are compared, especially with respect to the
four criteria: ease of learning, ease of use, completeness, and ease
of implementation. Finally, a decision is made as to what type of
language is best for the current application, and a specification based

on this type is described.

Definition of the Algebra and Calculus

Relational Algebra. The representation of the database as a

collection of relations encourages the use of set operations for data
manipulation. The primary purpose of a relational algebra is to pro-
vide a collection of these operations suitable for selecting data from
a relational database. Data selection is viewed as the formation (by
some operation of the algebra) of a new relation from the existing col-
lection of relations. In addition to the set operations such as the
union, intersection, and relative complement, relational operations are
also necessary for flexible manipulation of the data. The relational
operations include projection onto some domains of a relation, selection
of a subset of a relation, join and division of distinct relations (Ref
9: 68, 6: 329).

Relational Calculus. Retrieval languages based on the relational

caléulus, a version of propositional calculus which describes expressions
involving information modeled as relations, are another facility made

possible by the use of the relational model. An important aspect of

17

these lanquages is that algorithms which generate the relational expres-
sion can be described using the set and relational operations. Thus any
legal expression represents a relation which can be geherated from the
information in the other relations of the database.

Example. As an example, the calculus and algebraic representa-
tions of the simple query, "Find the names of all suppliers who supply ;
part 43," are given below.

The calculus expression is:

RANGE sp x
GET suppliesd3(s.sname): 3Ix(x.s# = s.s# A x.p¥ = 43)

This expression describes tuples containing supplier names from
the s relation into the workspace relation supplies43. The name x is
a tuple -valued variable used to relate the two portions of the selec-
tion expression. A functionally equivalent set of algrebraic commands
for this query is:

SELECT ALL FROM sp WHERE p# = 43 GIVING sel1s43

JOIN sells43, s WHERE s# = s# GIVING temp:
: PROJECT temp OVER sname GIVING supplies43 -

Algebra vs. Calculus

Ease of Learning. Since the database is being designed for use in

an educational environment, the student's ability to quickly grasp the
fundamentals of the language is very important in that the less time
spent learning and the more time spent using the language will allow
1 the student to gain the most benefit from the experience. Mathematicians
ﬁ consider the relational calculus to be more natural for users, because it
f allows retrieval of data based on the properties of that data, whereas
algebraic manipulation requires the user to specify an algorithm with the

algebraic operations necessary to perform the retrieval. Unfortunately,

18

e oL) T TR Y R

the quantifiers and bound variables inherent in the propositional calcu-
lus make the relational calculus uncomfortable and unnatura® fer non-
mathematicians (Ref 10:23). Since most students interested in the data-
base field have backgrounds which relate more to the algorithmic approach
to programming rather than thé non-procedural approach of the proposition-
al ca‘culus, the relational algebra is superior to the relational calcu-
lus when considering ease of learning.

Ease of Use. It is not always the case that facilities which are
easy to learn are easy to use. However, in this case, the relational
algebra is easier to use, since the population of users will for the
most part be students. The relational algebra works with relations as
a whole, rather than tuple-by-tuple as the calculus does. It is easier
for the student familiar with traditional programming techniques to take
a collection of relations and reduce them in a step-by-step fashion to
a resultant set of relations, than to try to formulate a single predi-
cate expression in the relational calculus to describe the result he or
she wants. |

Completeness. Codd (Ref 9) showed that both the relational alge-
bra and the relational calculus are relationally complete languages;
fhat is, given any finite collection of relations Rl, R2, . . ., Rn in
simple normal form, the expressions of the algebra or calculus permit
definition of any relation definable from R1, R2, . . ., Rn. From the
user's viewpoint this means any arbitrary simple or complex question
concerning the set of relations in the database can be answered by for-
mulation of a query in either the calculus or algebra. Thus each lan-

guage has a powerful and basic selective power.

19

b D ol o otk s SO SISV LR A SRVITE S T WEIREe

In most practical environments this power needs to be enhanced with
the introduction of a capability for invoking any of a finite set of
library functions w! ile staying within the algebraic 6r calculus frame-
work. Codd states that such enhancements readily fit into the calculus
framework; but in the algebraic framework, the functions have to be re-
cast in the form of mappings from relations to relations, and this gives
rise to circumlocutions. However, there is no reason why library func-
tions cannot be applied just as simply in the algebra as in the calculus.
One example is the language SEQUEL (Ref 11) which uses an algebraic
framework and includes such functions as COUNT, SUM, MAX, MIN, etc. Thus
both the algebra and the calculus satisfy the requirement of completeness.

Ease of Implementation. It was noted that the algebra is somewhat

more procedural in comparison with the calculus. For the Data Base
Management System (DBMS) this procedurality can be an advantage in that
implementation, on one level at least, can be reasonably straightforward:
the DMBS can simply perform all the joins, projections, and other opera-
tions as specified in the expression that the user has written. On the
other hand, such an implementation would not be very efficient, and
would very likely result in the user having to expend time and effort in
choosing the most efficient expression of the query -- clearly an undesir-
able state of affairs. However, as will be pointed out in the next sec-
tion, work has been done on optimizing the implementation of algebraic
expressions (Ref 12); and thus this objection may cease to be valid if
sufficiently efficient schemes are developed and implemented (Ref 2:120).
There are basically two reasons why a relational algebra is a
better implementation of an appropriate optimization interface : (1) A

relational algebra treats and manipulates whole relations as single

20

objects whereas the relational calculus type of interface deals with
the relations on a typle-by-tuple basis. A relational algebra may
therefore be considered to be at a higher level of abstraction than
these other interface systems, and thus offer more scope for high level
optimization. (2) If a relational algebra is conducive to smart opti-
mization, it may provide a practical implementation level for other
query languages. Indeed, Codd (Ref 9) has developed an algorithm for

supporting a relational calculus over a relational algebra (Ref 12:569).

Description of the Relational Algebra Based Design

For the type of system being developed, the above arguments tend
to favor the relational algebra approach. Thus a data manipulation and

g definition language was designed based on the relational algebra. The

specification for the language appears in Appendix B.

The data manipulation language includes all the traditional rela-
tional operations as discussed in the definition section. In addition,
statements are provided for insertion, deletion and modification of

the tuples in a relation, the ability to attach stored relations, and

delete, save, copy, sort and rename those relations or relations created
by means of the relational operations. Statements are also provided for
| preparing a relation for report generation and for inputting bulk data
into a relation. Note that particular forms of the SELECT statement do
provide for functions in the query (Refer to Completeness subsection).
The data definition language includes commands to define domains

and define relations based on those domains. As part of the definition

of a relation, security controls and integrity constraints are speci-

fied. These are important for protecting an individual's data from

21

being altered or deleted without his or her knowledge. Defined in this
way security controls apply to an entire relation. However, in the
future, it may be necessary (due to Privacy Act or "need to know" con-
straints) to have security on a tuple-by-tuple basis. In this case one
or more attributes of a relation would be declared as security attri-
butes which are never displayed but must be specified when performing
the otherwise forbidden operation on the particular tuple.

A1l overall security controls may be optionally specified with
the exception of the ID control. This identifies the owner or creator
of the relation and allows the database administrator to recognize these
owners. In addition the owner is allowed to perform any operation on
his or her relations and to change the passwords associated with the
security controls on his or her relations. In essence the ID security
control allows each user to be his own database administrator. This
allows the student to gain experience in database administration as well
as manipulation of the data. The administrator of the entire collection
of databases would typically be the instructor or a high level manager.
He or she would be allowed to access, change, or delete any relation in
anyone's database in addition to performing general maintenance of the

system, such as changing the storage algorithms to improve efficiency.

Summary
Most database languages for relational systems fall into a rela-

tional calculus or a relational algebra framework. It was shown that in
1ight of the criteria -- ease of learning, ease of use, completeness,

and ease of implementation -- and in 1ight of the goal of a pedagogical

system, the relational algebra was superior. This was then used as a

basis for the design of the database manipulation and definition language

appearing in Appendix B.

SOLUTIONS TO THE PROBLEMS OF RELATIONAL DATABASES

Determining methods to eliminate or reduce the problems of rela-
tional systems has occupied many researchers' time for nearly a decade.
Work has progressed slowly in this area because the relational model was
slow to gain acceptance as a viable alternative to the more firmly en-
trenched hierarchical and network models. This section presents the
methods used in this thesis to alleviate the problems described in the

first section of this chapter, especially the problem of inefficiency.

Integrity

Integrity deals with the prevention of semantic errors made by
users due to their carelessness or lack of knowledge. The integrity
problems mentioned in the Flexibility subsection have not been entirely
solved due to the limited scope of this thesis. However, in an excellent
paper Eswaran and Chamberlin (Ref 13) have laid out the functional speci-
fications of a subsystem for database integrity. All or parts of this
subsystem could be easily added to an already existing modular database
system.

This subsystem permits users to make assertions which define the
"correctness" of the database, and to specify actions to be taken when
the assertions are not satisfied. There are both static and dynamic
integrity assertions. Static assertions are constraints which must
hold true for the life of the data object. For example, part numbers
may be required to be non-negative integers, and any insertion or mod-

ification which would create a negative part number would be rejected.

23

PR 2 oI iapn .

ki — -

[RaSabunbit i itk i RPRARAIRE

Dynamic integrity assertions may be added and dropped from time to
time, and may describe not only the nature of a data object but also its
relationship to other objects. This is the type of assertion which would
be needed to solve the problem with the example of the network model,
where a relation of edges and a relation of nodes have implicit rela-
tionships between the tuples. This thesis has only developed the struc-
ture for using static integrity assertions in the definition of domains

and relations (See Appendix B).

Redundancy of Data and Efficiency at the Storage Representation Level

Data compression techniques are one way to remove redundancy of
data. Another, more powerful method, involves combining the indexes
of more than one relation into a common structure. In the User Expec-
tations subsection, the problems of efficiency of update vs. efficiency
of retrieval were pointed out. Some implementations have tried to solve
this problem by creating two access structures -- a link structure
among relations to provide efficient retrieval, and an image structure
for individual relations to provide efficient update. This method has
several drawbacks. One is that it really doesn't help the data redun-
dancy problem since many of the keys have to exist in both access struc-
tures. In addition, the system must support two different sets of access
procedures.

In a recent paper (Ref 15), Theo Haerder has developed a method
for combining the two structures into a generalized access path structure.
In order to explain Haerder's structure, some background material on
images and 1inks will be presented, and then a method for combining

these two structures and its generalization will be described.

Definitions. An access path giving value ordering and associa-

tive access by one or more attributes to one relation is called an
"image". For example, using the parts-supplier model.introduced in
Chapter I, an image on the CITY attribute of the PART relation would
provide access to tuples based on the specification of a value for CITY.
A value of "LONDON" would cause the access method to return the values
“P1" and "P4", or appropriate pointers to those two tuples.
Definition -- Let R be a relation with attributes A;, . . ., A..
An image Ii of the attribute Ai of R, i e {1, . . ., n}, is a mapping
from values in Ai to those tuples in R which have that value for the
ith attribute. Additionally, these sets of tuples qualified by values
of Ai are ordered according to the sorted sequence of values of A;.
The generalization of the term "image" to compound attributes is straight-
forward.
Access paths relating tuples of one relation to tuples of another
relation are called binary links. For example, a binary link between
the tuples of the PART and SP relations would provide an access path
from the tuples of PART to the tuples of SP where the P# attributes
were the same. Thus, a value of P3 from the PART relation would cause
the access method to return the value (S1,P3), or an appropriate pointer
to this tuple. Haerder uses special binary links according to the

following definition.

25

Definition -- Let R be & relation with attributes A

1,.--,A

S be a relation with attributes Bys « « .» Bps F(Ai) = F(Bn) for the

n’

domains F(Ai), F(Bk), ie{i, . . ., n}, ke{l, . . .,m}; A; be a candi-
date key of R. The 1link between R and S with regard to Ays By is defined
as the set L(R(Ai), S(Bk)) : = {(r,s)/reR, s €8, prAi(r) = prey(s)l,
where pra;(r) and per(s) are the projections to the components of r
and s which correspond to attributes Ai and Bk, respectively. The term
"link" may be generalized for compound attributes similarly.

The reference from the access path structure to the actual tuple
is usually done by means of TID's (Tuple Identifiers) or physical
pointers. An appropriate implementation technique for TID's is a
concatenation of a page number along with a byte offset from the
bottom of that page. This combines the speed of a byte address pointer
with the flexibility of indirection. The page number allocated in a
logical address space allows an indirect reference to the actual physical
storage block. The offset denotes a special slot which contains the byte
location of the referenced tuple in the page. Hence, the TID concept
offers two different kinds of indirection -- at the page level and within
the page.

Implementation Technique for Images. An image is.convenient1y im-

plemented and maintained through the use of a multipage index structure
which contains pointers to the tuples themselves. The pages of a given
index can be organized into a balanced hierarchic structure using the
concept of B*-trees (pronounced B-star trees) (Ref 16,17). For non-
leaf nodes, an entry consists of a key value and a pointer pair. The
key itself can consist of values of single or compound attributes and

can be represented in encoded form (Ref 18) allowing a particular sort

26

order on each attribute value in case of compound attributes. The pointer

addresses another nonleaf page or a leaf page of the same structure.

For the leaf nodes an entry is a combination of key values, along
with a variable length ascending list of TID's for tuples having exactly
those key values. In order té identify the length of the TID list an
additional length information field is kept with each stored key. In
addition, the leaf pages are chained in a doubly linked 1ist, so that
sequential access can be supported from leaf to leaf.

If the total storage space for the TID lists of a particular key
exceeds one leaf page, overflow pages can be introduced optionally
which can hold the overflowing part of the lists. These overflow pages
are chained with the leaf pages only, and they are not pointed to by
the nonleaf pages, in order to reduce the increase of the height of the
B*-tree.

If a mechanism is provided for enforcing the uniqdeness of keys,
this structure can also be used to implement an access path for primary
keys. The "image" of the relation is represented by the particular
value ordering when accessing the leaves of the B*-tree from left to
right (in post order). When a relation is created, one image of the
relation may be designated as the "clustering image," with the result
that tuples near each other according to a chosen order relation will
be stored physically near by.

Figure 3 shows schematically an image on the attribute CITY of
the PART relation. Assume that only the first four of many tuples in
the PART relation are given in Figure 1(c). Key values; e.g., "P2*,
are used as tuple identifiers (TID's) and their use as such is indi-
cated by enclosing them in parenthesis. The image as shown on the

attribute CITY is denoted by I(PART(CITY)).

27

DENVER PARIS ZION

ATHENS CANTON DENVER ROME TAMPA ZION

L\\FAIRBORN LINCOLN PARIS /)

> ' / r///////’

LONDON f2[(P1)| (P2)| NEWYORK| n| “** | PARI§1|(P2)

optionaT pointer
NEXT PRIOR
leaf paqe : to overflow page

Figure 3. Image implementation for I(PART(CITY)).

Implementation Technique for Links. A binary 1ink connects tuples

in one or two relations on matching attribute values. hsua11y, it is
implemented by using chaining techniques with TID's or physical pointers
(storage addresses). The TID chaining gives one level of indirection
compared to physical chaining of addresges.

For example, links are maintained in the Relational Storage
System by storing the TID's of the NEXT, PRIOR, and OWNER tuples in the
prefix of the child tuples and by storing at least the TID of the first
child tuple in the parent tuple according to Figure 4. In this example
one tuple of the OWNER relation PART(P#, . . .) is linked to 3 tuples
of the MEMBER relation SP(S#,P#,QTY). The binary link is denoted by
L(PART(P#),SP(P#)).

23

TID NEXT PRIOR OWNER
>>‘j . owner
(P2) (s1,P2) - - | P2 |GREEN | 17 | " PARIS tuple
first
(Sl,P2)>>“ (s2,P2)| (P2) |(P2)|S1 |P2| 200 member
‘ tuple
second
(s2,p2 (s3,pP2) | (S1,P2)|(P2)|S2 [P2 | 400 member
tuple
‘ last
(s3,P2) - (s2,P2)|(P2)|S3 |P2 | 200 member
‘ tuple

Figure 4. Link implementation of L(PART(P#),SP(P#j);
Tink occurrence for domain value P2.

Implementation Technique for a Combined Access Path Structure. A

binary link provides a direct path from single tuples (parents) in one
relation to sequences of tuples (children) in another relation. Usually
it is argued that the main advantage of a link is the direct access to
a tuple of either relation coupled by a binary 1ink, while use of an
image may involve a complete traversal of a B*-tree structure consisting
of several page accesses in order to find the child or parent tuple. The
relative gain of a link over an image is even enhanced when the child
tuples have been clustered on the same page as the parent tuple. In
this case no additional page has to be touched using the link, while a
couple of pages may be accessed in a large index.

It should be pointed out the relationships between tuples of one
or different relations are expressed explicitly by attribute values

in the relational model. This key property allows combined images on

29

the same domain serving also as link structures. Therefore, the advan-
tage of image and link access can be combined using a different kind of
organization of the Teaf nodes pf the B*-tree. The nonleaf nodes look
exactly as in the single image {ﬁpTementation. In the leaf nodes,
separate TID lists for both relations together with the related length
information fields are stored for each key. The lists for the parent
relation contain only one TID entry, while each variable length list
for the child relation contains the sequence of TID's for the children
related to a particular parent tuple. The order in these lists can be
exactly the same as in the binary link. In Figure 5 the discussed
examples for the SP and PART relations are treated in a unified way.
The various attribute values for P# in SP and PART are the keys in the

images and the matching P#'s also establish the link occurrences between

the two relations.

leaf page TID for PART

——

*e | P2 | 1]|3((P2) {(S1,P2)|(S2,P2](S3,P2)|- -

o ; (S
NEXT PRIOR TID's for SP ,htional pointen
leaf page to overflow page

Figure 5. Combined implementation of 1ink L(PART(P#),SP(P#)), and
the images I(PART(P#)) and I(SP(P#)).

t

With this access path structure the striking disadvantage of
separate images can be avoided, that is, the traversal of an additional
B*-tree structure, when the child tuples areAfo be accessed after the
parent tuple is located. In either case it must be assumed that the
owner tuple is found via an image access I(PART(P#)). 1If the leaf page
containing the required key (candidate key) for the tuple of the OWNER
relation is fixed in core, then the subsequent navigational accesses
to the tuples of the MEMBER relation are at least as fast as the
accesses via the binary link. In case of clustering, even more tuples
can be stored in a particular page, because the storage space of three
TID's per tuple and link is saved. On the other hand, the access to
the linked tuples in determined sequence enforced by the embedded TID
chain is not necessary. Furthermore, having the combined access path
structure, there is no need to fetch the tuples of a binary link sequen-
tially; e.qg., if it happens that the tuples are stored on different
devices, seeks and rotational delays may be overlapped.

Generalization of the Combined Access Path Structure. The com-

bined access path structure replaces different access path types like
image and binary link by joining the various characteristics of these
access paths in one unified structure. A considerable advantage is
gained, therefore, with regard to implementation complexity. Instead
of supporting specialized modules for each of the access path types,
only one unified set of modules working on this combined structure is
necessary. The proposed approach reduces the extent of implementing
various operations on access paths.

The proposed concept of the combined access path structure can be

extended in the following way leading to the "generalized access path

31

ol Al

structure": All variable length TID lists belonging to the various
attributes in different relations which are all defined on the same
domain are stored with their related domain value (kéy value). This
concept is not restricted to a single domain with single attributes
defined on it. It can be applied to given sequences of attributes
(compound attributes) corresponding tqybne particular domain sequence.

The format of the nonleaf pages is the same as for the image and
combined access path. All kinds of optimizations; e.g., key compres-
sion, which are available for single access path implementation can
be applied to them. (See especially "Prefix B-Trees" by Bayer and
Unterauer (Ref 18).) The leaf pages contain for each key up to m
variable length TID lists together with m length information fields.
If an actual domain value is not defined for attribute Aj, then the
corresponding TID 1ist does not exist and the corresponding length
information field indicates this fact by having a zero entry. At
least one TID 1ist must exist for a specified domain value; otherwise
the domain value is currently not used in any tuple of the related
relations and doesn't appear as a node in the access path.

The implementation of the generalized access path structure is
shown in Figure 6. The particular example is chosen for four relations
related by domain PART NUMBER. Let us assume that the relation R1 is
PART with P# being the primary key. R2 may be considered as the SP
relation with the inverted attribute P#. R3 and R4 are introduced as
the MANAGER and EQUIPMENT relations:

MGR(M#,P#,JCODE,...)
EQUIP(INO,P#,TYPE,...).

32

N ok,

kL

leaf page

TID for Rl

mm—t——

P2{1{3{114 |(P2) |(S1,P2) |(S2,P2)

(s3,

P2) E

NEXT

‘ PRIOR
; leaf page

—————

length infor-
mation fields

TID's for R2

{ 1)

(13) | (17) § (150)] (18)

TID for
R3

TID's for R4

optional pointe
to overflow pag

3

Figure 6.

Implementation of the generalized access path;

example for four relations on domain P#.

links in it is shown in Figure 7.

P# in relation MGR is specified as a candidate key, additionally. The

The attributes P# of the relations MGR and EQUIP are also inverted.

graphical representation of this example describing all existing binary

33

L1
PART L2 MGR
L5]]
: L3 L
L4 l,
SP EQUIP
Figure 7. A1l existing binary links based on P#.

“*"’F.’Q h % 'e.__t.“

Ao A " 5 —— T— " w

Here the same attribute name P# is chosen for convenience. In
principle each relation can have a different attribute name defined on
the same domain; e.g., PART NUMBER. In the case of domains with numeric
values each attribute can carry a different unit of the same or different
unit types. By accessing the index the appropriate conversion rule must
be applied to map the particular attribute value to the corresponding
domain value.

Each node in the leaf page; e.g., the particular node with domain
value "P2" in Figure 6, contains four variable length lists with four
Tength information fields describing the tuples of the four relations
with P# = "P2". 1If a particular attribute is specified as a candidate
key, the corresponding 1list length of the TID list is restricted to 1,
shown in the example for domain value "P2" for Rl and "M6" for R3. All
other attributes are not restricted at all.

Summary. In summary a generalized access path structure combines
the advantages of 1link and image structures in retrieval and update
operations, and is competitive from a performance point of view. In
addition, the various kinds of concievable pointers such as FIRST,

NEXT, PRIOR, OWNER, etc., can be represented by their relative position
in the variable length TID list. As a result a substantial saving of
storage space is gained with this structure. Finally, this unified
approach to access path implementation should reduce the complexity of

the system implementation.

Efficiency at the Conceptual Level

Relational database systems provide the user with a tabular view

of the data, a view that is independent of any machine or implementation.

34

The user need know nothing of the implementation in formulating his
query. Unfortunately, because a user is deliberately made unaware of
the actual data storage mechanism, he may write queries which, though
consistent with his relational view, have a very low efficiency factor.
It is essential that the burden of efficiency, since effectively
removed from the user, be assumed by the interface to the database.

The previous section presented methods for removing redundancy and
improving efficiency at the storage representation level. In addition,
very significant optimization can be done at higher levels of interpre-
tation where the global structure of a user query is known. Both Smith
and Chang (Ref 12) and Hall (Ref 14) have designed some algorithms and
heuristics to use in optimizing single expressions for a relational
algebra interface.

The basic organization of the optimizer is shown ?n Figure 8.
Syntax analysis entails checking the input query for proper form, ensuring

that security constraints are not being violated, and creating an operator

-tree. This tree is then passed to the tree transformer which has access

to a set of correctness-preserving algebraic transformations (Tables I-
IV), and also to a set of rules which determine when the application of

these transformations will increase efficiency.

“Correctness
Preserving
ransformation.

Basic
Procedures

——— A § Coordinating < Concurrent
l'siz'l';::l Tra::::rnr Operator Oata Base | _Response
. Canstructor Machine R
ransformation
A: Operator tree
‘”lll'j::‘” 8: Optimized operator tree

C: Set of cooperating concurrent tasks

Figure 8. The basic organization of the query optimizer.

35

The transformer optimizes the tree and passes it along to a mech-
anism which constructs an implementation of each operator as a task.
This operator has access to a set of basic implementation procedures
(Appendix C). The constructor creates tasks from these procedures in
such a way that the performaﬁce of the whole tree of cooperating tasks
is optimized. This is achieved by distributing and analyzing the
effects on sort order of possible implementation decisions, and then
creating tasks sc as to coordinate sort order throughout the task tree.
Smith and Chang provide a two pass procedure to implement this process:
the first pass up and second pass down the tree.

On the upward pass each branch is labeled with the set of sort
orders which can be efficiently generated from lower operations. These

are called preferred sort orders (pso). Then a pass is made down the

tree. As one goes down, the sort orders which can be most efficiently
supplied from below to a given operator node are already known, and
thus the sort order this node must pass up can also be determined. So
a pso is chosen from below while simultaneously constructing the appro-

priate implementation of the operator. Tuples will be re-sorted at a

] node only if no pso from below can be effectively utilized. The UP-
rules for the upward pass are presented in Table V, and the DOWN-rules
for the downward pass are presented in Table VI.

The final step is to execute the procedures. Although impossible

with the configuration assumed for this thesis, the most advantageous

implementation would run the procedures on a multiprocessing machine in

order to exploit the concurrency among tasks, generated by the above pro-

cedures. These procedures are described in more detail in Chapter IV.

36

1 SUMMARY

I Relational systems have significant advantages over other systems
including simplicity, generality and flexibility. Hoﬁever, a large and
; overpowering disadvantage in any simple implementation of a relational
'{ system is its lack of efficiency. By choosing a relational algebra
framework for the DML and DDL, the pedagogical needs of the system are
met, as well as opening up the way for implementation of the high level

optimization techniques discussed in the last section. The efficiency

problem can also be abated at a Tow level with the use of the generalized

access path structure also described in the last section. The methods ?

used to implement these procedures are the topics of the next chapter.

"—‘. v
Table I. ldempotency Laws of Relational Algebra
i
§
Expression Reduces To
1. AuA A
2. AnA A
: 3. A-A]
E ---------------------------------------
F. If AcB then
4 4, AuB B
i 5. AnB A
g 6. A-B]

Table II. Simplification Laws of Boolean Algebra

Expression Reduces To
1. aaa a

2. ava a

3. av(avb) avb
4. a A {avb) a

--

i

Al 493dey) 99s ‘g4 pue 24 pue T4 = J SJIYM

€4 ¢ ({23 : 9) » (14 2 v))~ 1:(8+V) » 30npoad ‘upof

L7.(4:v) (1Y) "/, uoiydafoud

g3 (4:v) 4:(83v) I apIALP

“ g-(4:v) (4 :9)-(4:v) 4:(9-v) - 3JUBJdJLP

(4:9)vyau(d:v) (4:8)v(d:v) 1:(guy) U UOL3D3sU3UL

| (4 :9)n(d:V) d:(gny) n uogun

(9 pue 4) : vy 9:(4d:V) : uoL3I9|as
w anLFeuId] [y 0] pautiojsuea) uorssaadxy uoryeaadp

$994] uMmoQ S1)373S buiAoy 404 smeq uolinqiaisitg °III dlqel

B i

shemie - n-/v ncLo(L v */. uoi333foud

*Al 493dey) 39s - €L L ((2L 7. 8) » (1L 7 V)) 1/ (9 %V) » 39npoad ‘utof

*U0139S433ul Se aues - (L 8)-(L 7 v) 1 (8-V) - dJUBURSSLP

‘uotje|aq pasols e g Jt g
40 pue uoL}e|dJ4 PaJOls
ey JL Y J0 SAay Adew

-1ad sutejuod | 4t ALuo - (L L 8)v (L V) 1/ (duy) U UOL}IISUIJUL

" sAemje - (L 9)n (L ¥ 17 (any) n uotun

*] uL aJe 4 jJo
s93nqLalje pue jea| e

3e jou 19373S 4t Auo - 4: (L4 V) 1 (4 :v) U0L3I3|3S
. a|ny uotjedl |ddy 0] pauwJojsued] uoissaadx3 uot3eaadp

S334L UMOJ S1JIC0Ud DULAOW 403 SME] UOLINGLAISIQ “Al d1qel

rmmu RN LT I I T T T T - - aaieat Al IS T T T mmmemo s e ne s e s S = - T

Table V. Rules for coordinating sort order and implementing operators
-- UP-rules (Ref 12).

Notation:

da is either the domain which R is sorted on (if R is sorted) or
n (if R is not sorted).

~x Is the preferred sort order (pso) set for Relation R. N.B. ya
may also include n.

In, where R is a stored relation, is the set of domains in R for
which directories (Indices) exist.

¢ is the empty set.

KEY(R) is the set of primary key domains in R.

UNARY(R) is true if R consists of a single domain.

LEAF NODE INTERNAL NODE
INPUT INPUT
osoution | oo OUTPUT LABEL LABEL OUTPUT LABEL
R(A) da | Uf (deB or KEYIRIG A) then {da) else 8 Vo |17 A1Ywe then ANYn ole A
'tE) dy | {da} k(] k()
i/ UNARY(R) and (Dclg or Dpds) then (dg) i/ MNARY(R) and DYy then ¥y
R{C=D]S |da dy | else if UNARY(S) end (Celg er Chdy) than {dg) | Y® V8 | eloc 17 UNARY(S) and CiYn them Ya
else {C,D) olse {CD}
R[CeD]S i/ C=dy and Dédy them {d3} if CeYa and DFYy then ¥
dn dy | else if Chdy end D=dy then {ds} Yn Vs | oleo f Ctyn and DtYy thon ¥y
(0 A "a") elie {dndy) . olse YauYs
Rus da dy | $ demdgin then (e} Vo Vo [4 (Yan¥al-(n}#e then (Yan¥g-{n)
oloe (n}) oloe {n)
fang dn dy | (dndy) Yo W8) 1f (Yan Y- (180 ehen (YanYy)-in)
shie VY3
R-8 de dy | i/ duids and [a=d then {n) Tn V| if (VanY)-(n}#0 then (Yan¥s)-{n}
else {dp} olse Y
AxS da ds | {dads) T Vs | Y
Rluc:A]S | da dy | if detd then dy olse Yn Vs | if Yanelr then (Yaed) olse &
LEAF/INTERNAL NODE INTERNAL/LEAF NODE
INPUT| INPUT
osemarion | 00T OUTPUT LABEL LABEL OUTPUT LASEL

#f UNARY(R) and DiYs then ¥
R{C=D]S lds ¥s| else 4/ UNARY(S) end (Cely or | ¥n ds | SYMMETRICAL
Coidg) then {dp) else {CD)

R{ceD]s if Cody end DIYs then ¥s
dn Vs| else if Code and Deyy thon {dy)| 0 ds | SYMMETRICAL
(02%" oloe (da)uys
Rus da Vs| I dun and dec¥s then [da) Yn ds [SYMMETRICAL
else {n}
RnS de Y| 1/ dedn and detp then (de} Yn ds | SYMMETRICAL ‘
else {da)uys i
CX I PR) Ya dy | i/ dssn and dgi¥a then (dg) .
else {n}) |
1
RxS da ¥s| (dalvYy Ya dy | SYMMETRICAL .
RleciB)S |de ¥y| I dueT thon dy olse @ Va da | If VY then (YaR) olse &

41 "
WRLS PARE LS EusT JUALIYY PRAWIdCA

FROM BQ¥Y B aa%i e b T

#
{
|

~
w
(BWL VUl LG e FER Ly "ulaaiaig e
s....wt..._u...s . 2wy ™ulaiaig e How's i 01A10 Urw iy ™uhatalo sxe Aos
uety e wrve | 2 lovsw=ul;inia vy pvp gy | o L) sy servr | & 0S1Y™u01A10 ww r% #] & livien 3
[s+ 3 Wis -, [R - v
Lol
E5SuK0NaYD PAuR~y) sope E5'SW00uMvD SRul 1) sope D
woweus | 4 (Wsu00ousvd wowe top 2y | & | Mrsuloouanws srury) ooy 0mtur 5] 2 fren) _arnh.ilnusvtu N - =
ho)
1410 g IS'alv 4310 espe (Sulw 1110 o or -
Asak 4410 (YSEWIO rubssia 5wk 10 (TubWI0 Hsukaa10 (rubsia (S%big10 wp o
G+7 PALe-2 wy julest H oo | & 38 MLre-2) syt (1AL y oupe | =8 Bh1e-3) i (irk g | 2 (OMIELs1g ww 03 0 g) oepe] 2 ™ L
EVNEAII0 SRVY<T) we SAAS) A Op -n..w:s gt i e T R E8u1410 3-8 97 VA7) 18WIz4050 oo 085u8) £ oope T
USW1241Q S-<1) vog g pus wip f SUl1 4510 B2k} sowe 620 pov up fy . vyt t{u)-CRAA) 1y (50014410 woys wie=tp 2y a
(WSuleuiing onpe -~
il -~y (D0 CAL- 4 w0pe VSN UUN N
USTRHing 3-8 {Tubwi0) movs B 1y KERMCM (e e o ~ow
e w“un.n_u._-...-... _..._\> n oo Srvuknaint (Fsbawio 9-7) N
1~ oo g g3 N (€Am)] ” =% L.
ol i o e Y S0 N s ik o | | etmernicnint s by & LTy A
" ¥ 27 WRN0~ [T [l A é
EOMUAN] Pp<y) woyr SL0% pus iy fy gl do{u)-CANR) £y .-d_.huﬂq.. I-.. (..N..CIH ~ » h
(Sulropn onpe {SubNOINN sope -t
Usulenoin (Fuh3uig Uswiowcin (b0 . m ¢
3 PR3] sy (WAR 5y oo A= 2:03) vonr {u}AR J) sepe
ASukN0INY 2 P1) dsvlowvn (rslossio {Sulbnon oo
woyr 4/5RUSY Jp oupe 127 CRILS=3) veyr {ul/R f) supe 10UODHN eyt 19 . S 39 Jy g
miuFus| L ASulNO 1 Pp-u) R AsuhoIn -y -7 Iy 19uonpn sy sy py oope | 2 "y
"y 47D pue uptp §y RLE~3) woys doju)-CRVER) fp wy uip-%p fy ?
insaeoukvior ’ o
W ¥did o . ursoevicnior <t
$ Bdid wout RA2W fy) sope i 2d1d *p nsovrviong
108 % Sd14) wous Hsg f} wpe ¥ T4 w9 NUAP f) e WALYR-{5u) - o
S Rdid Y =3 J) sope (08 & 3414) w01 200 f) o0 Hf) wogt {ujag fy oup (S]]
wminmreus| 2 Ho-4 N 3414} »p ' 127 % 3414} sy R0 f o | A SN sy dpg Hp I R
S 3414 vous Siuke fi) 1127 %% 3414) foge ' sa1dt W g1) fp sepe ok
woys 8210 pus a3 gy oy SRR £7) weye A pe0 R0 1 RS} vop lp-g pee %3 fy
AST=uBNIr Q+u woye SR20 9
AST-"TURNION 04 woyi 48,0 Jif sepe 13+7 Wy 1) f1) mpe (ST-"Tulemior sope
Isso-"ouhiniar -3 (SsT-2uliniar) (S3T-Tudinior
wolnrus| A v 9e3 # 5 pew s A o | 2 woye ¥24D pus (Saywnn /) e | 2 g (rvd @ 913 pre g 2 oo | A | s
R-¢ Wso=-yulnart -5 (vsT="Yulinior} rsa~"Sulinor
.y R0 pus (A A Y SR pee (v /) -y forQ # 911G e N N
ONION I8 $05VA30 ¥ GV =3 THIONIE WIVIMO § TV o (344399135 w3 (€3 IR ELE - I L (¥
300 VIV IAN) 3008 WML VTV URAY NI w0Ne o
AV Manin | (aewuicionous o | & WuRNO wp g pwpl 2] (v
APURLIFONS WRW)~T) woyr bR 1 u1070 Wy ¥ N
STVU-NN00 ONIGNIE WOLYNIIO0 ¥ VIOV o] ONION I WOL VIS0
2008 WIN 1 2008 YN I |
‘g!.illl-l_jgl!‘aolli.lh- Myt g3 -0l = 9w
() WBWOP 340 Y UONERI 10§ £10138P @ $HID Q" WIDIWKS Myt yu—~nl - s34
" “AQBBURI P 298 |3) pus)
139 O WRNOP YIym o) N A 8 (Q) (Arwq) yowesy pussado wlp 'y
‘(o) — A) Jo wana Lminge we 3 (1), (Assun) yuex pueaxdo s
*4)0 wawap Lsuimgm we 3 (L) (Kmeg) yowery punsado -7 ‘wopoN

(21 39y) SaLna NMOQ -- S40jesddo buijuswdidwi pue 43pdo JJos Huljeuipaood Joj sany 1A 3diqel

e

IV SYSTEM DEVELOPMENT

This chapter details the software development of the database
' management system. Discussion covers the initial system design and
anticipated modifications thereto, implementation techniques at the
{ data entry level and conceptual levels, and special utilization of

UCSD Pascal in the overall system structure.

SYSTEM DESIGN

Initial Development

Once it was decided to use a relational algebra based DML and
DDL, much of the system design followed in a straightforward fashion.
! Capabilities had to be provided at both the data entry level for in-
putting and verifying commands, and at the conceptual level for inter-
pretation and global optimization of specific queries.' A major break-
down of the system modules is shown in Figure 9. An executive module
controls access to all other parts of the system, procedures being
initiated from and returning control to it. The exec operates in one

of two modes: normal mode under user control, and special mode under

i control of the database manager (DBM). Special mode is entered by
inputting a unique identification password as part of the logon system.
Special mode causes the exec and its modules to ignore security restric-
tions on all relations, thus allowing the DBM to control and maintain
the entire database. In addition, priviledged operations such as an

|
i initialization command may be used only by the DBM acting in a special

mode.

43

ubLsaq waysAS 6 aunbL4

pajusud [dul JON

dN1Ids SIYNAII0¥d SSIIY
7 13AIT-H0T INYNTY £d02
28 - >
v Ny | fziwiLdo 1341 . s ~
QHOMSSY4 VS 140S 19313s
/q\\n) % " *
3714 aNvj [3714 anw| BI4 aN =
pV1dS1a AINIIXIL (8697 1103| [WoD 3IAVS | [-WOD L3
. | ‘ \ 41000 |—| 313130 LY3SNI
x X * x

AYOLNIANT INITYLTY HOBLLY 1103 \\\\.1\\\\\\\\\.)\\\\\\\\.\.\\\«
-/ J) \.

5134 MIN/| | SNOILINI o/1 |7 [vorwv1ay] | sniwwoa| |[snorLini| | waLsas
OW JW0LS| 30 3HOLS « wing | |vaIna3a) | “anrd3e) f430 ovay) | wosod
NMOQLAHS 405530044 ¥0SS300Ud dnL3s
W Taa
Sz =
ZS 93x3 a0
—m _ mm

The DDL processor creates and maintains the domain and relation

definitions which exist in the database. These definitions are kept in
main memory for quick access by the other modules, and are stored on a
disk file when the user quits the system. Since secondary storsje con-
sists of removable diskettes, each user may maintain a sepa: te sc.,
with possibly different relations and domains stored on them. The
definitions for these are read in during setup time, thereby allowing
each user to act as database manager for his or her own database. This
feature will also be useful in segmenting unrelated or very large data-
bases. For instance, information about classes, students, and instruct-
ors may make up one database, while information about staff and admini-
strative personnel may make up another.

The DML processor controls the execution of all other commands.
Four modules, ATTACH, INVENTORY, EDIT, and RETRIEVE comprise the major
breakdown of this processor. The purpose of ATTACH is to make relations
accessible to the user. This includes setting up any necessary or
desired access paths for those relations and checking security rights
for later manivulation of those relations. INVENTORY provides the user
with a Tist of the domains and relations he has defined or attached
during the current execution of the system.

The EDIT module's function is to execute a variety of utility
commands available to the user. These include the ability to insert,
delete, and modify tuples in relations, to copy the contents of one
relation to another, to select a subset of a relation using any of

several functions, renaming relations, sorting relations, and changing

the security passwords on relations.

The RETRIEVE module handles the creation aﬁd execution of rela-
tional queries. Queries are treated by the system as command files
which may be changed, stored or retrieved from storage, or executed.
Modules exist in RETRIEVE to perform these functions and in addition
RETRIEVE also processes comménds to display the contents of relations.
Further breakdown of the RETRIEVE modules will be described in later
sections of this chapter.

Modules also exist to properly shut down the system. New domain
and relation definitions must be stored on the disk as well as any
relations not already saved or permanently changed.

Separate from all of the above modules are those that handle data
at the storage representation level. This is a natural division in a-
relational database system because the relational view of data assumes
nothing about how it is stored. Thus, when better stopage models are
devised or new hardware is introduced, only these modules need be

changed.

Future Modifications

Due to the limited scope of the thesis, Figure 9 shows several
modules which have not yet been implemented. Most notably the modules
which comprise the storage representation level of operation exist only
in theory (See Chapter III). Thus, in order to have some basis for
running and testing the other modules of the system, a temporary
structure containing the domain and relation definitions was created.
The structures used are simple linked 1ists, one sorted by domain name

and the other sorted by relation name.

46

Since one of the primary advantages of relational systems is its
simplicity of data structure description, there is no need to employ
different data structures at the conceptual level. Thus when an appro-
priate set of low-level access procedures are implemented the temporary
linked 1list structures employed above will give way to the same relational

model. For each user database there will exist a relation of domain defi-

nitions and a relation of relation definitions, and the same low-level
procedures which access the database relations may be used to access
these "definition" relations.

Lacking a set of low-level procedures, several other modules as
shown in Figure 9 were not implemented. Most of these modules have func-
tions which have no applicability if only the definitions of relations
exist; i.e., no actual data in the relations. These modules are straight-
forward in their function and should pose no problem in their future
design and implementation. (More detail on the function of these modules

can be found in the user's guide, Appendix B).

IMPLEMENTATION TECHNIQUES AT THE DATA ENTRY LEVEL

Computer systems in general are of little use if an appropriate
interface to the human user does not exist. Such an interface must be
in harmony with both user skills and task requirements. This is espec-
ially true in the present case, for this database system is being speci-
fically designed for pedagogical uses in the training of students.

Some of these considerations went into the selection of the rela-
tional algebra as the basis for the interface DML and DDL. In addition,
consideration of actual machine/user interaction was mandatory. Solutions
to two problems were attempted: the handling of over two dozen user com-

mands and the problem of input error detection and/or correction.

47

The Abundance of Commands

Due to the wide abundance of commands which must be available to
the user in a comprehensive database system, a multi-level command
system was designed. The hierarchy of commands is shown in Figure 10.
At each nonterminal level thé user is given a prompt line with a list
of commands from which to choose. By entering one character (usually
the first character of the command) the user either descends a level
into the hierarchy where more choices are available, causes invocation
of a procedure or procedures, or quits the current level and returns to
the previous level. For example, if a user wishes to change a previously
created command file he will type R at the SYSTEM level and a new command
line at the RETRIEVE level is displayed. Then by selecting the GET
option by typing G the user is able to get his command file from disk
into a workfile in memory. Then by typing E (still at the RETRIEVE
level) the first 20 or fewer lines of his file is displayed and a new
command line at the EDITCOM level is displayed. After using the options
at this level to modify his file, he types Q to return to the RETRIEVE
level. Now he may save the new version of his file, execute it, etc.,
or he may simply return to the SYSTEM level by typing Q once again.

The number of options available at each level was limited to be-
tween four and six (not counting the Q(uit) option). Fewer options at
each Tevel would have meant more levels. While the system would know
how deep it was, the user would soon lose track of what levels he came
from. On the other hand, if there were more options at each level, the
user would get lost among the various options, especially if many com-

mands started with the same character.

WASAS puewWO) 43S |9AIT-LILNMW 0L d4nbL4

]

SNOILdO

SNOI.1dO

WoJI1a3
2
2,
&/
o \Q;\\ 9

SNOILdO SNOI1dO
hu $so09 hmznl JAITYLIY

DITCOM

7\

1103 3404
s
L, &

(N3

5

N
S

o

SNOILdO

h..AT:a

SNOILdO
W3LSAS

SNOILd0
3NI43a

Another method of reducing complexity was used in the selection of
which commands to make available at each level. Grouping related commands
under one option reduces the need to jump from one level to another. For
example, after X(ecuting) a command file the user can immediately D(isplay)
the result without quittingthe RETRIEVE level and perhaps descending
anuther branch at the SYSTEM level. Also, the more commonly used commands
which would more likely be called are at a higher level. For example, the
options under EDIT are divided into two sets. Those anticipated to be used
most often are at the first level of EDIT and any others are at the second

level, obtained by typing "?".

Error Detection/Correction

Errors at the Data Entry Level are usually one of two types: (1)
the user enters a command and either misspells it, includes an invalid
parameter, or specifies an illegal operation; or (2) the user enters a
valid command he did not mean to. The first type of error is usually
termed a syntax error. These errors are easily detected, but depending
on the sophistication of the system, perhaps not as easily corrected.
Many times the error can simply be ignored. For example, when an illegal
option is entered after a command line is displayed, the command line is
simply redisplayed with no action taking place. In other cases the error
must be pointed out and either the user allowed to correct his mistake on
the spot or as in the case of a command file, ignore the command in which
the error occurred and continue to process other commands. In either
case, the user should be allowed to correct his mistake or to discontinue

execution of the command or command file.

The second type of error is not so easily detected. However, cer-
tain precautions can be taken by the system to allow the user to undo
these types of mistakes. For instance, consider a user in the RETRIEVE
module where he has created or changed a coomand file. He executes the
file and now wishes to leave RETRIEVE and exit the system. However,
through oversight he has not saved his new command file on secondary
storage -- an easy error, especially if execution took a lcng time. The
system, though, will not allow him to leave the RETRIEVE module without
answering a question to throwaway his current workfile with a "Y". This
backup method is applied in other instances where it is appropriate.

Some user actions, such as defining a relation which was not
wanted or copying one relation to another by mistake may be rectified
by simply deleting the relation definition and deleting the copied
tuples. However, some operations such as a multiple tqp]e modification
may be impossible or extremely time consuming to back out of if the user
does not have a copy of the original relation. Thus all relations
created or modified do not take their predecessor's place until the user
asks that they be specifically saved as such. Thus, one method of pro-
viding permanent backup is to modify the relation, rename it and save
it. When the user is sure he no longer needs the original relation it

can then be deleted.

IMPLEMENTATION TECHNIQUES AT THE CONCEPTUAL LEVEL

The main thrust of this thesis occurs here in the design and imple-
mentation of new techniques at the conceptual level. Only recently has
work begun in the optimization of performance at the conceptual level.

(See the last section of Chapter 3). Since, with a relational view,

51

a user query is expressed at such a high level of abstraction, the system
itself has the power to make implementation decisions. The presumption
is that a "smart" interface can perform better than a nontechnical user
who is overwhelmed by a mass of detail. On the other hand, much work
remains to be done on how to design the conceptual level interface to
efficiently implement a query, let alone provide it with enough intel-

Tigence to out-perform a confused or less than proficient user.

The design chosen for this implementation is pictured in Figure |

11. This design is an expansion of the basic query optimizer as shown

i in Figure 8, where TREE corresponds to Syntax Analysis, OPTIMIZE to Tree
| Transformer, and RUN to Coordinating Operator Constructor. The next
four sections describe the algorithms and data structures used in each

of the submodules of EXECUTE.

The TREE Module

; The TREE module receives as input a pointer to a command file and
' returns as output a pointer to a network of shared trees. The following

. algorithm is used for performing this transformation:

For each command in the command file do:

(1) If all elements of the command are present then continue |
else perform error subroutine. 3

(2) If all relations to be operated on have been defined and
attached and the result relation name is not already in use
then continue else perform error subroutine

(3) Create the node and link it to any nodes it uses as operands.

Error subroutine:

1) Print error message.

2) Mark command file to indicate error found.
(3) If user wishes to continue having the syntax of his file
checked then ignore this command and continue with next one
else quit TREE procedure.

52

A\

NOY

A

b

371IWI1d0

SLNPOW IUNDIXT 4O 140390 "L Bunbi
NIVHOARS| [0T314X14| |33u19N07| avawONI4
ON 109
33uLdn| | sansht TASHIS 3940AI0 il Em?wm“_
300N 30QN_008g:
§341NMOQ NMOQCOY¥d| [NMOGT3S | | 1008W0D RENETE mmm”_mms/ﬁ%%mzﬂwm&

dNlIdS

31n23x3

NV

e B e e e e

e g o

O R g Yo AT Y e et +

4

The data structure used for each node is a record with the
following fields:
LEVNUM -- (integer) number of nodes which point to this node.
NODNUM -- (integer) copy of LEVNUM but used later as a counter.

LEFTPTR -- (pointer to node) points to the node which is the left
% operand or is nil if the left operand is a stored
] relation.

n
b RIGHTPTR --same as LEFTPTR but refers to right not left.
|

NEXTNODE -- (pointer to node) used initially to link all nodes
together and later to link the root nodes together.

H DOWNPTR -- (pointer to node) points to the next node in a pre-
3 order traversal of the tree; used only in RUN.

UPPTR -- same as DOWNPTR but refers to previous not next node.

LEFTNAM -- (string) contains the name of the node pointed to by
; LEFTPTR or the name of the stored relation if LEFTPTR
f nil.

RIGHTNAM -- same as LEFTNAM but refers to RIGHTPTR not LEFTPTR.

(Note: if the node is a unary operator such as SELECT then
LEFTNAM and/or LEFTPTR are always used.)

| RESULTNAM -- (string) the name of this node.

:

g OPERATOR -- (string) the function of this node; e.g., UNION, etc.
i

PSORESULT -- (pointer to 1ist) points to a list of the preferred
sort orders for this node; used only in RUN module.

FIELDRESULT -- (pointer to list) points to a 1ist of the attributes !
of the relation produced by this node's operation.

. VARS1 -- (pointer to list) points to a list containing a boolean

; expression in postfix notation if this is a SELECT node,

h to the divide attribute if this is a DIVIDE node, to the
join attribute from the left node if this is a JOIN node,
! to a list of project attributes if this is a PROJECT node,
. or nil otherwise.

1 VARS2 -- (pointer to list) points to the join attribute from the
| right node if this is a JOIN node, or nil otherwise.

SRS A PRSPPI TP TR Sy P Py

HDFLAG -- (boolean) TRUE if this node is a root node of some tree,
FALSE otherwise.

STFLAG -- (boolean) TRUE if this node is pointed to by more than

one other node, FALSE otherwise.

It is at this point that the differences between the basic query
optimizer and the methods used in this thesis become evident. Previous
attempts At optimization have considered only single expressions. That
is the user formulates a single query and expects a single relation as
the result. This thesis has expanded this viewpoint to include multiple
queries for which the user expects several relations as the result. Thus
i the opportunity exists for simultaneous optimization of a set of queries.
| These opportunities occur in two areas: in the exploitation of shared
subtrees not only within a query but also among different queries, and
in the execution order of the various queries. These ideas are embodied

in the module SPLITUP.

The SPLITUP Module

The SPLITUP module receives as input the pointer to the network of

shared trees provided by TREE, and produces as output an order optimized

forest of separate trees in which all shared subtrees have been removed.
The algorithm for performing this transformation is as follows:

(1) FINDHEADS -- all root nodes in the network are found and linked
together using the NEXTNODE field.

(2) While there are root nodes not yet considered by this step do:
(2.1) LONGTREE -- determine which of the remaining trees has
the most number of shared subtrees.
(2.2) Place the root node for this tree at the beginning of
the chain of root nodes.
(2.3) Continue with remaining nodes.

(3) For each tree, FIXFIELD -- set up the attribute 1ist to be
pro?uced by each node in this tree using FIELDRESULT to point
to tl

(4) Perform various error checks where applicable:

(4.1) Ensure relations are union compatible.

(4.2) Ensure that whenever attributes are referenced, such as
in a SELECT predicate, or a PROJECT 1ist, that each
corresponds to some attribute in either the FIELDRESULT
list of a left or right son or the attribute list of
the proper stored relation.

(4.3) Ensure relations are divide compatible.

(5) DIVORCE -- For each tree do a preorder traversal of the tree
where at each node if the leftson/rightson's STFLAG is TRUE
and NODNUM count greater than 1 do:

(5.1) Reduce the leftson/rightson's NODNUM count by 1.

(5.2) Make the LEFTPTR/RIGHTPTR nil so that when this node is
executed a stored relation will be used.

(6) REVCHAIN -- reverse the list of root nodes so that the trees

which have the formerly shared subtrees are executed before
the stored results of those subtrees are needed.

The importance of step 6 in the above algorithm is obvious. If
performance is to be improved by executing shared subtrees only once,
it must be ensured that they indeed are executed before the resulting
relation is used. However, step 6 only ensures that shared subtrees in
different queries are executed properly. Shared subtrees can also occur
within the same query and are just as easily eliminated by the SPLITUP
algorithm. In order to ensure that these shared subtrees are executed
before being used, note that in the elimination step (5) a preorder tra-
versal of each tree was done. Therefore, by executing the nodes of each
tree in a reverse preorder, shared subtrees will always be executed

before being used.

The OPTIMIZE Module

Once individual operator trees are available, the correctness pre-
serving transformations introduced in Chapter III can be applied to them

with the goal of optimizing the performance of the overall query.

56

Notation: For examples, the parts-supplier model will be used as
the stored relations (Figure 1(c)) and the following pictorial notation

for the nodes in a tree will be used:

-- PROJECT -- SELECT
-- JOIN

Y) -- UNION -- INTERSECTION -~ DIFFERENCE 1

-- DIVIDE -- PRODUCT

/)

In addition a shorthand notation for expressing queries in a single

line is:
Avu B -- set union of relations A and B
A - B -- set difference
A n B -- set intersection

A °/.T --projection of relation A onto the components given in
the projection 1ist T

A : F -- selection of a subset of relation A of tuples for which
filter F is true, where F is a boolean predicate involving
the components of the tuples of A

A * B -- cartesian product or join on relations A and B

A - B -- division of A and B, where A is a binary relation and B
is a unary relation

57

Two types of tree transformation and one boolean simplification

procedure are implemented in the OPTIMIZE module. One type moves unary
operators down trees, while the other involves replacing a subtree of
set operations on the selections of the same relation by a compound
boolean expression. This second type will be discussed first.

The COMBOOL Algorithm. Consider the operator tree shown in

Figure 12(a). The relation R may be either a stored relation or an
intermediate temporary relation. A direct implementation of this tree
would result in R being read three separate times, and several new tem-
porary relations being created. This type of tree will be referred to
as a "boolean" tree. One reason for consideration of boolean trees is
that a boolean tree is the only way of representing compound boolean
restrictions on a relation using the strictest form of Codd's relational
algebra. But even if this strict form is not enforced the user may still
create queries which result in boolean trees; especially if the predicate
would be difficult to understand and formulate if not broken down.

The approach used is to translate boolean subtrees into a single
operation having a compound boolean predicate. If R is the common rela-
tion, T1 and T2 are trees, and E is any boolean predicate, the transla-

tion function is given by:

t{T1 n T2} =<{T1} and {72}
T{Tl u T2} =1{Tl} or (T2}
T{T1lE]} = E and t{T1}
t{R} = true

For example, the tree in Figure 12(a) translates into the compound

boolean operation shown in Figure 12(b).

58

(b)

0= [0;> '3' and (D3 =
'4' or D4 2 DS) and

Figure 12. (a) Set operations on SELECTs of the same relation R.
(b) Transformation of the tree in (a) into a single

SELECT.

_ The transformation of boolean subtrees insures that the common
relation is never read more than once. Further, if the common relation
is stored and has directories available then it may be possible to sig-
nificantly reduce the number of secondary storage page accessed by the
directory analysis.

This transformation can be easily implemented by a recursive pro-
cedure where the union or intersection nodes are tested for possible
combination. As long as the recursion processes the nodes such that
the sons are done before the father, as in postorder, then only one
pass is needed to make all possible combinations.

The COMBOOL algorithm implements the above procedure and'simultan-

eously applies the idempotency laws of relational algebra as shown in

59

A e s b e it e L

Table I (Page 38). Simultaneous application of these procedures
avoids the introduction of redundant expressions into the compound
boolean predicates and provides optimal simplification (at this level)
of the UNION, INTERSECT, and DIFFERENCE operators.

The COMBOOL algorithm: "

For each node in a postorder traversal of the tree which is a
UNION, INTERSECT, or DIFFERENCE operator do:)

CASE "subtree" of: ;

: apply law 1,2 or 3 from Table
I whichever is appropriate.

X

: apply law 4,5 or 6 from Table
I whichever is appropriate.

: combine into single SELECT
operation.

R R
The SIMSEL Algorithm. SIMSEL is an algorithm for simplifying the

boolean predicates of SELECT operations. In addition, each predicate
is put into a standard form which is necessary for the SELDOWN algorithm

(see later section) and which will also make implementation easier and

60

ki . s Sl iy dcateccoaindad iictt. sh i alin

more efficient. The TREE procedures take the boolean expression

entered by the user and put it into postfix form. The purpose of

SIMSEL is to take this expression, put it into conjunctive normal

form and simplify this result as completely as possible.

The SIMSEL algorithm:

For each SELECT node in the tree do:

(1)

Reverse the postfix order of the expression.

(2) Create an expression tree using an inorder recursive proce-

(3)

(4)

(5)

(6)

(7)

dure accessing sequentially the result of (1).

Distribute OR operators into AND operators:
(xay)vz=(xvz)arlyvz).
(xv(yarz)=(xvy)allxvz).

Rotate the tree so that all AND operators are moved left as
far as possible. At this point the tree looks like:

This is now in the standard conjunc-
tive normal form. Each triangle is
called an orgroup if it contains at
least one OR operator or it is an
atomic node.

Transform each orgroup by eliminating all redundant nodes.
This is expressed by the identities adapted from Table II,
where X is an orgroup, y is an atomic node:

yv X
Xv y

<<
< <
><
< <
< >
St st
nu
Lt ¥
=<
< <
< >
Nt Nugs?®
< <
<<
nou

Transform each pair of orgroups using the following boolean
identities, where X, Y are orgroups, y is an atomic node:

XaX=X

yays=y .

Xay=yaX=y, ify is in X.
XAY=YAX=Y, if al1 nodes in Y are in X,

Recreate the expression in postfix order.

61

ey

D e U

P

The SELDOWN and PROJDOWN Algorithms. The other type of tree transfor-

mation moves the unary operators, SELECT and PROJECT, down the operator
| tree. These are implemented via the SELDOWN and PROJDOWN algorithms,
respectively..

! The SELDOWN Algorithm. Consider the two relations SUPPLIER and

§ SP. The query "Find the name and status of all suppliers who supply
any part in the quantity greater than 200" can be expressed by a user

in the relational algebra as:

3 JOIN SUPPLIER, SP WHERE S# = S# GIVING T1

SELECT ALL FROM T1 WHERE QTY 200 GIVING T2

PROJECT T2 QVER SNAME, STATUS GIVING T3.
T1l, T2 and T3 are temporary relations formed by the operations of JOIN,
SELECT, and PROJECT respectively. This query, represented as an operator

tree is shown in Figure 13(a).

(a) (b)
SNAME , STATUS SNAME , STATUS

S# |
3 qQTY 200 3
| -i
; SUPPLIER |
; 200 |
i S#L 2\ S#
|

SUPPLIER SP sp

Figure 13. (a) The tree for a user query, (b) The tree for a transforma-
tion of the query in (a).)

62

At this stage the tasks in the qdery are clearly identified
as the operations of JOIN, SELECT, and PROJECT. Without considering
the detailed implementation of SUPPLIER, SP, and these operations, a
good programmer would know that there are correctness-preserving trans-
formations which can be applied to improve efficiency at this level of
abstraction. Tn particular it is beneficial to move SELECT operations
as far down the tree as possible using such transformations. This is
because the SELECT operation reduces the number of tuples to be pro-
cessed by subseugent operations. Any reduction is particularly advan-
tageous when JOIN (or PRODUCT) operations occur later. In general a
JOIN operation on two relations, A and B, has to be performed as a full
Cartesian product to produce n{A)n(B) tuples from which the relevant
tuples are selected. However, any part of the selection filter which
is moved through the join is executed n(A) times rather than n(A)n(B)
times (or vice-versa). In the present case, the SELECT operation
rejects those joined tuples whose QTY is not greater than 200. The
effort involved in joining tuples which are subsequently thrown away
is wasted. Since the QTY domain occurs only in theSPrelation, selection
can be performed on SP before joining the result with SUPPLIER. After
applying this transformation the tree appears in Figure 13(b).

Moving SELECT operations down the tree is straightforward in most
cases. As Table III shows, in all cases except JOIN and PRODUCT, the
select operation is either "distributed" through the other operation
or in the case of a sequence of SELECTs the filters are simply concaten-
ated. Some alternatives are given that require less filtering, but
these are not preferred for two reasons. First, the reason for the

transformations is that filters reduce cardinality significantly and so

63

o S
—_ . e
) | TN

|
{
]
i

ORI U SR

b o A Al ki =

should be worth the repetition. Second, by making a symetric distribu-

tion, common subexpressions that lead to successful application of the

idempotency laws discussed in the next to last section are not destroyed.
The only really complex transformation occurs for joins. In

general the filter (F) associated with a join refers to both of the

relations (say A and B) being joined. However, there may be parts of

it that refer only to one or the other of the argument relacions, and

this part could possible be factored out and moved down through the

join. Thus, it is desired to transform filter F into an equivalent F1

and F2 and F3, where filter F1 refers only to components of relation A,

filter F2 refers only to components of relation B, whereas filter F3

refers to both relations A and B. Clearly F1 and F2 should be as

large as possible. The algorithm for doing this is: |

(1) Apply the boolean simplification procedure of SIMSEL to the
SELECT node. Now F will be in conjunctive normal form.

(2) Set F1 = F2 = F3 = true.

(3) For each conjunct x of F do:
If all elements of the conjunct refer to relation A then

F1=Fl A x

else if all elements refer to relation B then
F2 = F2 A x

else
F3 = F3 A Xx.

(4) Transform tree:

64

if F3 # true :

if
F2 #
true

A 8

In order that each SELECT operation is moved down the tree as far
as possible the following general algorithm is used:

SELDOWN Algorithm: For each node in a preorder traversal of the
operator tree which is a SELECT operation do: apply the appropriate
distribution law from Table III. .

Notes on the Efficiency of Moving SELECTs. Transformations like

the distribution of a filter into a UNION do not necessarily improve
things. If A and B are disjoint, then the cardinality of their union

is the sum of their individual cardinalities and filter F is applied as

many times both with and without the transformation. Thus applying the
distribution must always be favorable. But if A and B overlap, then
for some tuples, if the filter is distributed, it will be applied
twice, which may not compensate for the saving of work in the union
obtained by performing the filtering first. In some cases, the filter
may not change the cardinality much, and then there is a loss by moving

the filter down the expression tree. For intersection and difference

this worsening of the situation when the filter does not change the j

65 l

cardinality significantly is even more marked. However, as noted before,
for joins -- especially where the join is necessarily a full quadratic
join -- the transformation almost always improves things.

Note, however, that moving SELECTs down to the leaves of the
operator tree has an importaht added advantage. During the evaluation,
the relation at a leaf is stored, and the presence of a filter would
enable the system to use any indexes or inversions present. This
could lead to significant savings compared to the alternative of reading
through all the tuples of the relation and selecting those desired using
the filter. This latter course is the only course available for filters

positioned at nodes other than leaves.

The PROJDOWN Algorithm. There are also benefits to be gained by

moving PROJECT operations down a query tree. PROJECT operations decrease
the width of tuples and, due to the elimination of duplicate tuples, may
also decrease the number of tuples in a relation. Tn Figure 13(b) the
PROJECT operation retains only the SUPPLIER attributes SNAME and STATUS.
It is therefore sufficient to supply JOIN with only the SNAME, STATUS

and S# attributes from SUPPLIER, and the S# attribute from the SELECT
operation. Figure 14(a) shows how the tree appears when additional
PROJECT operations are included before JOIN.

Notice that the original PROJECT must be retained in order to
eliminate the S# attribute before output. Each of the new PROJECT
operations can be retained or removed individually depending on whether
or not it increases efficiency. This decision is influenced by the

fact that the implementation of PROJECT operations cannot take advan-

tage of directories, whereas the implementation of JOIN often can.

0l ol RS et A 1 Bl i e n g byt AR Bt 5% wemwet .

SNAME, STATUS SNAME, STATUS

&Kiﬁ’é““ SUPPLIER

SUPPLIER
QTy 200

SP SP

Figure 14. (a) Further transformations on the tree of Figure 13(b).
(b) Final optimized tree for the query of Figure 13(a).

The PROJECT operation over SUPPLIER will shield JOIN from using any
existing directories. The PROJECT is therefore deleted. The other
PROJECT is retained, since there are no directories associated with the
output of the SELECT operation. The final optimized tree is shown in
Figure 14(b).

In contrast to the SELECT operation, the distribution laws for
PROJECT are somewhat more complex, in that several of the laws are
only applied when certain criteria hold. These laws are given in Table
IV. For the same reasons SELECT operations were moved down to the
leaves of the tree, it is desired not to move certain PROJECT opera-
tions there. For instance, implementations of INTERSECT and DIFFERENCE
need only compare primary key attributes to determine tuple eligibility

for the result relation and especially at a leaf node there generally

67

exist directories on these keys. Therefore, PROJECT operations which

é would remove these keys should not be distributed through the particular
operation . Care must also be taken in moving a PROJECT operation through
i a SELECT, in that by performing the PROJECT first, attributes referred to
| by the boolean expression in‘the SELECT operation are not eliminated.

| Once again the only complex transformation occurs for joins. The
projection list (T) can be broken into two disjoint sets, one contain-

ing attributes from the first joined relation and the others from the

j second joined relation. Thus, in general the PROJECT operation can be A
! split into two PROJECTs and moved through the JOIN. However, as brought
I out in the example, moving a PROJECT through a JOIN at a Teaf shields
the JOIN from the use of directories and thus lowers efficiency. In

: addition, the original PROJECT must be retained if it does not include

! both of the attributes used in the JOIN condition, or if the PROJECT is

not moved down one or both of the branches of the JOIN. (Note in a

PRODUCT operation it is never necessary to keep the original PROJECT.) il

Two further reductions can be accomplished when moving PROJECTS.

First, if one of the projection lists created as a result of moving a

PROJECT through a JOIN is empty, then the JOIN is a useless operation

g/ N

and can be eliminated, along with the branch for which the projection

| was empty. Second, if a PROJECT operation does nothing; i.e., the

projection 1ist contains all of the attributes of the input relation,
it can be eliminated. The algorithm for PROJDOWN is as follows:
PROJDOWN Algorithm: For each node in a preorder traversal of the

operator tree which is a PROJECT operation do:

(1) Eliminate it if possible.

(2) Apply the appropriate distribution law from Table IV, eliminating
a JOIN if possible.

Modification of the Transformation Algorithms. The transformation

algorithms given above have one fatal flaw. As theystand, the possibility
exists for destroying the shared subtrees found with the SPLITUP procedures.
Thus, a simple test to see if a shared subtree would be violated shouid be
inserted in each algorithm. Each shared subtree can be optimized indivi-
dually and since nodes are never moved up the tree, the recursive algorithms
above will automatically do this. The only side effect occurs when in the
PROJDOWN algorithm, a JOIN operation and one of its branches can be elim-
inated. If any or all of the branch to be eliminated is a shared subtree
then a way of executing that branch must be implemented. The problem was
solved by noting that the JOIN is only eliminated as a result of trying to
move a PROJECT through it. Since PROJECT is a unary operation, the shared
subtree is attached to the PROJECT as a second argument. This will ensure
that the subtree is executed without affecting the actual operation of the
rest of the tree.

The OPTIMIZE Algorithm. Now that the various optimization algorithms

have been described, the overall OPTIMIZE algorithm can be specified. The
order of application of the various algorithms is quite flexible; however,
some are better than others. Smith and Chang (Ref 12) and Hall (Ref 14)
both suggest moving select operations down the tree as their first step.
Smith and Chang further recommend that combining boolean subtrees be the
next step and then another application of moving the now combined selects

down the tree. In terms of the algorithms described here the order would

be:

69

Sl dine L P e P

B I

SELDOWN
COMBOOL

1.
2.
3. SELDOWN
4. or 5. SIMSEL or PROJDOWN.

This order is inefficient in that the SELDOWN procedure must be called
twice, and in that within that procedure SELECT operations are unneces-
sarily moved through boolean subtrees which are to be combined later.
Thus this implementation uses the following OPTIMIZE algorithm:
Without violating shared subtrees do:
(1) COMBOOL -- combine boolean subtrees on a common relation
(2) SELDOWN -- move SELECT operations as far down the tree as
possible; calling SIMSEL's simplification pro-
cedure when moving through a JOIN

(3) SIMSEL -- simplify and standardize the boolean predicates
of SELECT operations.

(4) PROJDOWN -- move PROJECT operations as far down the tree

as possible but never through a SELECT or JOIN
operation at a leaf.

The RUN Module

Whether or not the tree is optimized, procedure calls must be gener-
ated to perform the operations specified. However, there is a certain
amount of optimization which can be done in this regard as well. This
part, developed in (Ref 12), is known as the coordinating operator con-
structor (Refer to Figure 8). The coordinating operator constructor
takes an operator tree and implements each operator from a set of basic
procedures in such a way that the sort orders of intermediate relations
are optimally coordinated. The set of basic procedures is described in
Appendix C.

Each procedure is designed on the premise that a relation is always

large compared to one of its directories. Each procedure operates on

70

"piped" relations whenever feasible so as to avoid writing and reading
temporary relations to and from secondary storage. However, in several
binary operators (e.g., PRODUCT) it is essential to have one operand as

a stored relation, otherwise one operand subtree must be evaluated

repeatedly. The procedures always access stored relations sequentially
so as to avoid the high time overhead associated with random access on
secondary storage devices. When a temporary stored relation is used
repeatedly by some operator (e.g., JOIN) directories may be first created
to speed access and further reduce paging overhead. Each procedure

assumes its input relations do not contain duplicates, and UNION and

PROJECT remove any duplicates they create before passing the relation up
the tree.

SELECT operations are implemented by one generalized procedure.
This procedure is essentially an extension of the "list combining" and
"test tree" algorithms developed in (Ref 19). The idea is to utilize
directories to reduce the number of secondary storage pages which must
be accessed. The SELECT procedure always outputs tuples in the same
order as they are input.

There are three JOIN procedures. JOIN1 is only used for the
equality predicate in a frequent degenerate case, when one relation has
a single domain. Tuples are output in an order determined by the other
(multi-domained) relation. JOIN2 is used for most cases of the equality
predicate. The output relation is sorted on both "joining" domains.
JOIN3 is used for nonequality predicates. Tuples are output in an order
that corresponds to one of the input relations.

There are four procedures for each of the set operators UNION,

INTERSECT, and DIFFERENCE. The four procedures for UNION are typical.

71

The idea is to exploit any common fast access path (i.e., sort order or

directory) between the two input relations. UNION1 exploits a common
sort domain to output tuples, without duplicates, sorted on the common
domain. UNION2 exploits directories over a common domain. Output tuples

are not in any consistent sort order. UNION3 takes advantage of a situa-

ST TR TR AR TRSTN T T s e TS

tion in which one relation is sorted on domain [and the other relation
has a directory over D. Tuples are again output in no consistent sort
order, UNION4 is only utilized when there is no common fast access path.
Now the scheme for coordinating the selection of sort orders for
relations passed between operators can be described. From a considera-
tion of the basic procedures, it follows that there are circumstances in
which an operator at some node of the operator tree can be implemented
by any one of several procedure calls with comparable efficiency. Fur-

ther, each of these procedure calls will give a different output sort

order. An element of choice is therefore introduced into the sort order
of an intermediate relation. Such a choice can often be maintained (or

even increased) in intermediate relations on higher branches of the tree.
The sort order for an intermediate relation must be chosen so as to lead

to an optimum overall implementation of the operator tree.

As mentioned in Chapter III, Smith and Chang have developed a
relatively rudimentary, but often highly effective method for coordinating
the sort orders of the nodes in a tree, which involves two passes, up and
down, through the operator tree. As noted the UP-rules for the upward
pass are listed in Table V and the DOWN-rules for the downward pass are
listed in Table VI. The rules differ depending on whether the node in

question is: (1) at a leaf or (2) completely internal,and, in the case

of binary operators, whether a node has (3) a leaf left operand and an

72

internal right operand or (4) an internal left operand and a leaf right
operand. These rules were generated from the set of basic procedures in
Appendix C by considering the relative efficiency of each procedure in
all relevant situations (for more details see (Ref 20)).

To continue the example; the UP-rules and DOWN-rules will be applied

to the optimized tree in Figure 14(b). Assume that the primary key for

SUPPLIER is S# and the primary keys for SP are S#, and P#. Figure 15(a)
shows the result of applying the UP-rules to this tree in the case that
SUPPLIER is sorted on S# and SP is sorted on S# and directories exist for
the primary keys.

First the SUPPLIER branch is labeled with {S#}, since it is in this
order that tuples will always be retrieved from the SUPPLIER relation.
Similarly the SP branch is labeled with {S#}. Note that if SP were not
sorted the branch would have been labeled with {n}. fhe UP-rule for
SELECT (R[E]) indicates that an efficient implementation of a SELECT
operation at a leaf will preserve the sort order (dr) of the stored rela-
tion. Therefore, the output of SELECT is labeled with {S#}. The UP-rule
for PROJECT (R[8]) at an internal node indicates that if there are any
common domains between the input pso set (yg) and the set of projected
domains (8), then it is most efficient to output tuples sorted on one
of these common domains. In this case (ygn8) = {S#}, and the output of
PROJECT is so labeled. The UP-rule for JOIN (R[C=D]S), where one operand
(R) {s at a leaf and the other (S) is internal, indicates that if S is
mary and a directory exists for the joining domain /C) of R then the pre-
‘or~ed _utput sort order is dg. In this case dg = S# and C = S#, and so

w ‘et ¢ in 'y labeled with {S#). Finally, for the upper PROJECT,
2ME AT Y - empty, and so the UP-rule requires

v el g O .

o

(a) (b)
{ SNAME, STATUS } {SNAME, STATUS }

PROJECT3[T3, { SNAME,STATUS },
SNAME]

{S#
SUPPLIER SUPPLIER

{S#} T1 |{S#}

PROJECT1[T1,{S#}]

SELECT[SP,QTY > 200]

{S#} {S#}
SP SP

Figure 15.(a) UP-rules applied to the tree in Figure 14(b).
(b) DOWN-rules applied to the tree in (a).

Now the DOWN-rules are applied starting at the root and working
down. Since (Yg n g) is empty, the DOWN-rule for PROJECT specifies that
that this node is to be implemented by the PROJECT3 procedure. The third
parameter of this procedure, which determines the output sort order, is
any arbitrary domain in the output pso set. In this case SNAME is arbi-
trarily chosen. The DOWN-rule for JOIN states that the JOIN1 procedure
should be used to implement this node. Similarly, PROJECT1 and SELECT
are specified for the remaining nodes.

The net result is that each operator is implemented as efficiently
as possible for the available input sort order(s). The only operation
which is denied the use of its most efficient algorithm is the upper

PROJECT: its input sort order is such that it must eliminate duplicates

by sorting on SNAME.

In this example there were no choices of pso at any branch other
than the root. This implies that operators could have been bound to
their implementations on the upward pass of the tree. In general there
will be a choice and binding must then be done on the downward pass.
This is illustrated in the next example.

Figure 16 gives a tree which cannot be further optimized by the
use of tree transformations. It is assumed that Rl is sorted on domain
A, R2 is sortgd on domain D, and R3 is not sorted. Application of the
UP-rules gives the labeled tree shown in Figure 17(a). Notice that
there are several branches with two or more pso's. The choice in this
case is introduced by the two leaf PROJECT operations. Figure 17(b)
shows how the DOWN-rules have coordinated sort orders and bound implemen-
tation procedures so as to take advantage of this choice. Examine the

advantages of the decisions made by the DOWN-rules in this example.

Rl

{8,C,G}

R2

{G,H}

RS {A,8,C}

R2

Figure 16. AN Operator tree the relations RI, RS, R3I

75

(b)

Uk i el

PROJECT2(T4,{B,C,G}]

{G}
JOIN3([T2,A,>,H,T3,T2]

{A}/T2 T3\{G}
PROJECT3[R3, {G,H},G]
INTERSECT1[R1,T1]

{A

R3

o PROJECT3[RZ,{A,B,C},A]

R2

Figure 17. (a) UP-rules applied to the tree in Figure 16.
(b) DOWN-rules applied to the tree in (a).

The advantage of outputting tuples sorted on A from the PROJECT
operation on R2 is that both INTERSECT and JOIN can be implemented effi-
1 ciently. INTERSECT will have both its operands sorted on a common domain

and can therefore use a fast "merge" procedure. This intersection proce-

dure automatically outputs tuples sorted on A. In the case of a non-
equality comparison, JOIN requires one operand to be stored in sort order
| on its "joining" domain. Since the "joining" domain of T2 is A and T2 is

already sorted on A, JOIN can be implemented without additional sorting.

The advantage of outputting tuples sorted on G from the PROJECT
operation on R3 is that the output PROJECT operation does not need to
perform additional sorting. Since T2 is stored in the appropriate sort
order, JOIN will pipe T3 so as to produce tuples which are also sorted

on G. The output PROJECT therefore receives tuples sorted on one of the

76

projected domains. This PROJECT can then remove duplicates by local com-

parison rather than by sorting.

From Tables V and VI it can be seen that the UP-rules and DOWN-
rules take into consideration only directory and sort order availability.
In general this is the only iﬁformation known about relations at the time
when optimization is performed. However, it will be noticed that the
function a(Y), which means select an arbitrary element of Y, is utilized
in several rules. This function can be implemented by either using a
random selector or, if some method of predicting run-time condition
exists, selection could, for example, be from the predicted smallest
relation, or a domain whose directory is predicted to have the least num-
ber of distinct values.

After the DOWN-rules have been applied, some branches may still be
labeled with pso sets containing several elements. This implies that the
upper operations are insensitive to a particular set of sort orders, and
so the sort order can be selected at run-time when more information is
available.

The RUN Algorithm. The RUN algorithm incorporates the above proce-

dures with the necessary steps to ensure shared subtrees are executed

before being used:
(1) INSUPS -- 1ink nodes of the operator tree in preorder through
the DOWNPTR field and in reverse preorder through
the UPPTR field.

(2) UPTREE -- accessing nodes via UPPTR, determine the pso set
for each node using UP-rules.

(3) DOWNTREE -- accessing nodes via DOWNPTR, create an implemen-
tation of each node using DOWN-rules.

(4) Execute the procedure calls created in (3), storing an inter-

mediate result if STFLAG is TRUE; i.e., this is a shared subtree.

77

4
4

Implementation Techniques at the SYSTEM Level

In Chapter II, the hardware and operating system on which the data-
base system was to run were introduced. In this section some of the
interfaces to that operating system are discussed.

The current size of the entire database system is approximately 50K
bytes. By the time low-level access procedures are implemented the system
will be well over the 64K suggested minimum for running the system. How-
ever, a very important feature of UCSD Pascal consists of its capabilities

for segmentation and overlays. Any program may be broken into a maximum

‘of seven SEGMENT procedures. Thus non-overlapping code can be put into

separate SEGMENT procedures where the code and data for each SEGMENT are
in memory only while there is an active invocation of that procedure. For
example, one-time code, such as the SETUP module, can be put in a SEGMENT
procedure. Then after performing the module, the now-useless code is
taken out of memory thus incré%sing the available memory space.

The UCSD Pascal system also supports a facility for integrating
externally compiled and assembled routines and data structures. These
modules are know as UNITs. More precisely a UNIT is a group of interdepen-
dent'brocédures, functions, and associated data structures which perform a
specialized task. Whenever this task is needed within a program, the
program indicates it USES the UNIT. One UNIT is used in the database-
system. It contains data structures and subroutines used by more than
one segment procedure. In particular all procedures which perform special
functions on the terminal are included here. Thus if the terminal is

changed only the procedures in the UNIT need be changed.

78

V. VERIFICATION AND VALIDATION

i Verification and validation are important aspects in the design of
1 any new system. They are especially important in this system design

? because the algorithms used are new in their conception and ever newer
in their implementation. Verification of the current system is fairly
straightforward. As with most systems, testing is performed until the
system must be delivered. However, testing can be stfuctured Jjust as
the system is modularized. For instance, the procedure which moves a
SELECT operation through a UNION operation can be tested by creating an

appropriate tree, passing it to the procedure to be tested, and examining

the tree afterward. A procedure exists to print out an operator tree for

such examination. Since many of the tree algorithms are recursive, it

is best to test operations on them at the root node, an internal node,
and a leaf node. Verification is also important at the Data Entry Level,
since the system must ensure that only "valid" inputs are accepted and
"invalid" inputs are rejected.

The process of validation is somewhat more difficult. Since the

system is not complete, there is no feasible way to see if the optimiza-
tion algorithms actually improve performance. At this point only previous

validation studies can be examined. In his article on optimizing single

|

J\ expressions (Ref 14), P. A. V. Hall has provided the results of an experi-

‘ mental validation of a system employing some of the same procedures used
in the system described herein. (Notably missing are the algorithms

! COMBOOL and except for the combining of sequences of projections, the H
algorithm PROJDOWN.) The reader is referred to Hall's article for details,

but the basic results are summarized here.

79

bt il
C ———

Hall formulated seven queries from simple to complex and ran them

OAE: ot a4 4 iy

on three levels of his optimizer with each level adding more "optimization".
Figure 18 shows the breakdown of tr2 three levels. Table VII describes the
relations used in his test and Table VIII 1ists the queries tested using
the notation of Chapter IV. The results are presented in Table IX. Hall
concluded from the results that "the transformations do catch the extreme

§ cases without degrading well formulated queries to a great extent. In

“ practice the sizes of relations would be orders of magnitude larger, and
the savings would be more significant. The overhead for the optimizer

would become completely insignificant."

e —t

00001 00001 000T°T1
‘1 wmotLun ‘7 wuojLun 0T umojLun uLojLuUn Jaqunu
3no ajep UL 3jep J3qUNU UIMOLUOQ uorjisinboe 0001 v 1SIH
00001 0002
‘1 wu0jtun 03 1 dduanbas
393fqgns 9pod> Aama(002 N Jaa
00001 00001 00001
‘T waojrun ‘7 waojLun ‘I waojLun 01 03 [9duanbas
snjels ssaJppe auweu J3quNU J3MOL40q 01 v Myg
00¢ 000001 00001 000T 03 T
‘1 waojjun ‘1 waojrun ‘1 waojrun 3duanbas Jaqunu
apo) Aamag 3Ll 40y3ne uoi3Lsinboe 000t 1 bov
14 € 2 1 K11 euipae) da4bag
sjuduodwo?) suoipje|3y oleN

(v1 J9Y) sa9ziwpidQ Jo s3Isal ul pasn suoile|dy IIA 3|qel

81

e

e

P

(panuLjuod)

(001> €300T > £3) % £3 > €3 % S9=1D:(dW3L (00T_> €7:00v))

dWil « ¢ > g:1SIH LXey
(oot > €001 >L9)8 L9 > 27 % SLUNMAS > 8:1SIH) » (001 > €2:DIv)) LPLW
(00T >€200T > £2)% 8 <92 % 001 > &9 % L3 > 23 ¢ G2=12):ISIH « DIV LuLy
(0ot > €300T > £2)83 8 <92 % 00T > €3 % £3 > 23 8 62=12):ISIH » DIV Leutbrao S
(2 < €I:ISIH N 2 < muszmw n 2z < €3:doy Lxey
(2 < €9:1SIH n 2 < €9:myg) n 2 < €3:D2V LPLW
(2 < €2:1SIH n 2 < €y:mu8) n 2 < €2:DIV LuLy
Z < “2:((LSIH » Mug) » DIY) Leutbiao ¥
(¢> mu:m:_ ng> munzﬁ_mws ¢> €9:0ov Lxey
(€> ®2:1STH " € > E9:Mug) n > E€3:Doy LPIW
(> €3:1SIH ng> €):M¥8) n £> €2:bav LULW
€>%2 :((LSIH n Myg) n DIV) Leurbiao £
1 ¢ 1SIH pxel
13 % ISIH LPLK
17 % ISIH LuLy
23 % (€91 % (19€2°2) % 1SIH)) Leuibrao 2
¢ Lxey
d LPLW
ISIH-1SIH LULW
1SIH-1SIK Leuibrao |
uossaadxy 19A37 *ON 153]

(v1 J2y) “J9ziwi3do jo S|9A3| 994Yy3 aYy3 Aq PalMOFSUBAF aJe A3y} YOLUM 03 SUO|SSaAdXa oy} YILm
43Y33603 uMoys aue sucissaddxa jeutbiuo ayp suaziwiido Hupysa) up saiaanb se pasn suopssaddxl IIIA atqel

ey o o

bye€geacly g (E19=CT9:1dW3L » EdWIL) U J.S.Nm._m % (€19=219:2dW3L » E£dWil)
Un

€dW3IL «©9=32:00v x (99=12:1SIH » Mug)
2dW3L « £26€ = 23:900
TdW3L +G1€6 = 23:2a0 Lxey
P¢€3¢2y¢ Ly 3 =€19:(G1£6=CD:20G) » (62=52:D3V » (92=12:1ISIH x Myg)) v
¥2c€9¢20° 19 3 €19=219:(£26€+22:900) » (62=99:02v x (92=12:1SIH » Myg))) LPIW
¥9¢€9¢2y<1 3e6=t10 3 Aﬂu"ﬁw% 63=7) % S"SWNGQQ » DOV » ISIH » Myg)) v
b2¢€327°19 2 (1268 = 2 8 (t19=¢ly 3 63=5) 9 99=19):(3a0 » DIV ~ _%_m *N_ém: LULW
2¢€7¢29¢ 103
(s1€6=90: (YToct9€x¢29°1n 2 (£19=219 g 69257 % 93=13:(200 » DIV » SWI x Emet v
9¢€323¢l) g
(£26€=92: (¥19*t0°€9°2)°1) ¢ (E19=219 3 69=59 8 99=19:(2aa x DIV « ISIH » Myg))) Leutbiao L
€dW3L - 2dWil
€dWIL « 19 % TdWil
2dW3L + 29 % TdWal
TdW3L « ((LSIH n M¥g) v (Myg n DIV)) Lxey
23 % ((LSIH " Myg) v (M¥8 n DIY)) - 12 % ((1SIH » Myg) v (Myg " DIV)) LPLW
23 % ((1SIH n Myg) v (Myg » DIV)) - 19 2 ((LSIH myg) v (Myg » dIV)) LuLl
23 % ((LSIH » myg) v (Mdg n bIY)) - T2 % ((LSIH " Myg) v (Mys » dIY)) Leutbrao 9
uotrssaadxy 19A37 *ON 3591

(panupjuod)
IIIA @198l

83

o " 'Y

| ' Table IX. Times taken to answer the queries of Table VIII without
$ optimizers and with the three levels of optimizer. Times shown are
! the smallest of a series of trials (excepting query 7, in which only
5 one trial was made). The measurements were made on an IBM System 370,
! model 145 using multi-access system CMS, with between 10 and 15 active
I users during the trials [Ref 14].
uf CPU time taken (s)
. Query no. no-opt Mini Midi Maxi
,j 1 2.01 2.21 0.73 0.81
3 2 10.37 1.20 1.69 2.22
H 3 3.78 2.73 2.74 2.95
§ 4 5.49 5.73 5.83 8.41
j 5 4.13 4,36 3.60 3.76
| 6 3.87 4,12 4.25 3.23
{ 7 estimated estimated 1401 693
! 10 days 10 days
|
!
1
|
i
1
Algorithm3 | |Algorithm3 Algorithml | |Algorithm2 Algorithmé
! Distribute | |Distribute _J Combine Identify Common
! -4 filters, [dfilter projection ridempotency [subexpres-
B not joins | |through removal sion eval-
joins uation
——— ——
~ Mini Mini
\ — —
. Midi . -,
Maxi
'?1gure 18. Relationship among the three levels of optimizer and the
-transformations.
84

VI. CONCLUSION

OVERVIEW

The title of this thesis implies that two goals were sought. One
was to design a database system for pedagogical applications, the other
to design a relational database system using the most efficient implemen-
tation methods available. The first goal was met to a great extent in
the design of the data manipulation and definition language. The decision
to use a relational algebra based design was influenced by this goal as
well as the provisions to allow each user to be a kind of "mini-" database
administrator, defining and controlling distinct sets of relations.

The second goal was achieved in that a relational system was designed,
however, the efficiency of said system is yet to be conclusively proven.
Even so, a series of transformations that can be applied to a relational
query to produce an equivalent query that can be executed faster has been
presented. These transformations are in the strictest sense of the word
not optimizing but rather ameliorating because they can not be guaranteed
to improve the time taken to compute the result. However, as argued, the
chosen transformations are reasonably likely to improve performance.

An important consideration is the interaction between these goals.
Since the system is earmarked for use in a pedagogical environment, the
level of use will many times be very low; i.e., small queries on small
relations. Thus, in these cases the optimization procedures should be
"turned off", either in part or completely, in order to eliminate their

overhead without affecting the user's viewpoint of overall system perfor-

mance.

85

FUTURE_RECOMMENDAT IONS

Due to the limited development life of this thesis and the expanse
of computing milue which this thesis addresses, there are many opportuni-
ties for future projects and/or follow on thesis investigations. These
recommendations are:

(1) Efficiently implement the low-level access modules using the
basic procedures outlined in Appendix C and the generalized access path
structure discussed in Chapter IV, keeping in mind the limits on space
and time imposed by the use of a micro-computer system.

(2) Once the low-level modules are implemented, a major project
would involve validating the optimization procedures and fine-tuning
them to exact optimal behavior from the overall system.

(3) Alternatives to the operator tree structure may be examined.

(4) Cost estimation methods for determining when to apply the
optimization procedures should be examined.

(5) Once the system is completed, introduction of a sub-schema
definition (Ref 2) level between the data entry and conceptual levels
may be a desired and useful addition.

(6) Consideration should be given to developing a dual data
entry system for educated users. For example, cutting down of the
length and/or number of prompts, automatic correction of simple errors,

etc.

FINAL COMMENT

Database systems defined using the relational view have great
potential for revolutionizing the information industry. The relational
view promises a simple, flexible approach to a person or business's

information retrieval problem; if only the problem of efficiency can

86

AD~ADBC 395 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOQ==ETC F/¢ 5/2
THE gESlGN‘AND IMPLEMENTATION OF A PEDAGOSICAL RELATIONAL DATAB==£TC(U)
DEC 79 M A RO
UNCLASSIFIED AFlT/GCS/EE/79-l'0

202

Heozas

be solved. It may be that technology may solve the problem by making

computers bigger, faster, and cheaper so that what is inefficient now

will be tolerable later. However, even larger improvements can be made
by improving software which is currently a generation of growth behind

the hardware on which it runs.

i
]
j

10.

1.

12.

13.

14.

15.

BIBLIOGRAPHY

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
Communications of the ACM, 13 (6): 377-387 (June 1970).

Date, C.J., An Introduction to Database Systems (Second Edition).
Reading: Addison-Wesley, 197/.

Banerjee, Jayanta, et al. "DBC -- A Database Computer for Very Large
Databases," IEEE Transactions on Computers, 28 (6): 414-429 (June 1979).

CP/M User's Guide, Digital Research. (Available from AFIT/ENE).

UCSD (Mini-Micro Computer) PASCAL, Version II.0, Institute for Infor-

mation Systems, University of California, San Diego (March 1979).
(Available from AFIT/ENE).

Whitney, Kevin M., "Relational Data Management Implementation Tech-
niques," Proceedings 1974 ACM SIGMOD Workshop on Data Description,
Access, and Control, New York (1974).

Palermo, F.P., "A Data Base Search Problem", Proceedings of the
COINS-72) Symposium (December 1972).

Nijssen, G.M., "Present and Future Possibilities of Database Technology,"
Proceedings of the IFIP Congress, Stockholim (1974).

Codd, E.F., "Relational Completeness of Database Sublanguages,” Courant
Computer Science Symposium 6 Data Base Systems, 321-328, New York (1

Popa, J.H., "Relational Data Management", Department of Defense, 1976
(AD A029892).

Chamberlin, D.D. and R.F. Boyce "SEQUEL: A Structured English Query
Language," Proceedings 1974 ASM SIGMOD Workshop on Data Description,
Access, and Control, New York (1974).

Smith, J.M., and P.M.-T. Chang "Optimizing the Performance of a Relational
Algebra Database Interface," Communications of the ACM, 18 (10): 568-579
(October 1975).

Eswaran, Kapali P. and Donald D. Chamberlin "Functional Specifications
of a Subsystem for Data Base Integrity,"Proceedings International
Conference on Very Large Data Bases (September 1975).

Hall, P.A.V., "Optimization of Single Expressions in a Relational Data
%ase System,” IBM Journal of Research and Development, 20 (3): 244-257
1976)

Haerder, Theo "A Generalized Access Path Structure," ACM Transactions
on Database Systems, 3 (3): 285-298 (September 1978).

- o AR ST W2k

Ty~

3
!
J
:

16.

17.

18.

19.

20.

" D

Bayer, R. and E. McCreight, “Organizatioﬁ and Maintenance of Large
Ordered Indexes," Acta Infromatica 1 (3): 173-189 (1972).

Wedekind, H., "On the Selection of Access Paths in a Data Base System,"
In Data Base Management, J.W. Klimbie and K.L. Koffeman, Eds. Amsterdam:
North-Holland Publishing Company, 1974.

Blasgen, M.W., et al., "An Encoding Method for Multi-field Sorting and
Indexing," IBM Research Report RJ1753, IBM Research Laboratory, San
Jose, California (March 1976).

Astrahan, M.M. and D.D. Chamberlin, "Implementation of a Structured
English Query Language," Communications of the ACM, 18 (10): 580-
588 (October 1975).

Chang, P.V., "A design for a relational database system," University
of Utah Technical Report.

89

APPENDIX A

A COMMUNICATION NETWORK BETWEEN THE ALTAIR 8080
AND THE INTEL 6080 MICROPROCESSOR SYSTEMS

The steps used in bringing up CP/M and consequently UCSD Pascal on
the ALTAIR 8080 system using the existing facilities of CP/M on the INTEL
8080 system are outlined below.

1) The first step was to design a communication network between

The schematic for this box is shown in Figure A-1. The cable connections

were made as follows:

Cable 1 -- Intel serial CH2

Cable 2 -- Altair serial Port 1

Cable 3 -- CRT Modem Port
The CRT to which Cable 3 was connected was used to talk to the Intel.
Another CRT was needed to talk to the Altair. Thus a separate RS-232

cable was connected to the second CRT's Modem Port and to the Altair,

serial Port 0.

90

the Intel and Altair. A three way RS-232 interconnection box was designed.

[P PO et e AT e e

P2 U

"X0Q YDILMS 2£2-S¥ JO O}3ewAYIS

*1-y aJnbL4

X4

40393Uu0) Z£Z-SY

N

59

o#
40329UU0) 2€2-SY

¢ 9 (L MHV

I#
40393uu0) 2£Z~SYy

1,2, &, [WHV

A

Yo img

Yo3ims

Yo7EMS

S YA X

e e < o oo

s v H . i

ey e

B 1 S N At i Pkt e

ine

T -~

L. S T R TRy S Y

A T - S - - R . N - s et i e g i i

The following two configurations for the switches were used in

this project:

Configuration 1 Configuration 2
1
— 3 — 3
— 1 —_— 2
— — l
i

/N M\

Configuration 1 allows the systems to act independently, but with input
to the Altair allowed via Port 1 from the Intel machine. Configuration

2 forces the Intel system to accept inputs from the Altair rather than

jts CRT. Input is still allowed to the Altair via Port 1.
2) The next step was to create two programs, one to run on the

Altair, the other on the Intel, with the purpose of transferring a CP/M

core image to the Altair and then forcing the Altair to execute that
image. This CP/M image will force the Altair to access the disks of the
Intel system over serial Port 1. Thus a program to make the Intel think
it was a disk was designed. Under the purview of this program the Intel’'s

sole purpose was to do disk I/0 for the Altair. When the Altair wished

92

to read a sector it would send an 'R' over the serial line. This would

tell the Intel to prepare for a read, receiving the disk, track, and

sector numbers the Altair was now sending it. The Intel would then access
the disk and send the information back to the Altair over the serial line.
Similar actions occurred for a disk write. In addition, since the Altair
is now accessing the Intel disk, when a reboot is necessary, the disk

which it reboots from must contain the same CP/M image passed to the Altair.
This can be done using the SYSGEN program, by first building the image in
core and then via SYSGEN putting it on the disk.

The programs to do this were CMP16K -- program on Intel to transfer
CP/M image, BOOTCPM -~ program on Altair to get core image and transfer
control to it, and DISKSIM -- program on intel to simulate a disk over
the serial lines. The source code for BOOTCPM and DISKSIM are attached;
however, the source code for CPM16K and the disk which was created to
reboot CP/M under control of the Altair was destroyed in one of several
disk crashes not related to this effort. A description of the content of
CPM16K appears below.

The CPM16K program contains a CP/M core image with a BIOS which
will force the Altair to perform disk accesses over serial Port 1. The
actual executable program does the following:

1. Send a start character to the Altair; this is the character
which BOOTCPM waits for.

2. Send the address where the Altair is to start storing the CP/M

image, the length of the image and an address for the Altair to go to

to start executing the CP/M.
3. Send the CP/M image.
4, Quit.

s

The following steps were used in executing the above procedures:

~ 0) Set switches on box to Configuration 1.

1) Bring CP/M up on the Intel system.
On
2) Change baud rate of Intel serial CH 1 to 9600 baud.
Intel < .
CRT 3) Prepare to execute CPM16K; i.e., type CPM16K, but no
\ carriage return.
(4) Bring the Altair operating system up.
on 5) Mount disk 0; i.e., type MNT @ <«cr>.

Altair < 6) Execute linker; i.e., type LINK <cr>.
CRT 7) Link in BOOTCPM; i.e., type L BOOTCPM P <cr>.
[8) Execute BOOTCPM; i.e., type X <crs.

9) Execute CPM16K; i.e., type <cr>.

On

Int 10) Execute DISKSIM; i.e., type DISKSIM cr and immediately
ntel change switch settings to Configuration 2. It not done

CRT soon enough, the entire process must be repeated.

11) The CP/M prompt should appear on the Altair CRT.

3) The next goal was to create a CP/M disk for the Altair system.
Using the facilities of CP/M brought up with the above procedures, pro-
grams to perform disk I/0 for the Altair disks were created. These pro-
grams were patched into the BIOS of the CP/M image so that then access
could be made to either the Intel disks over the serial lines or the
Altair disks using its own disk access ports. Using this new version of
CP/M, a program to read in tracks 1 and 2 was placed on track @, sector 1
of the future CP/M disk. Then using the CP/M utility, SYSGEN, a copy of
the CP/M image was placed on the disk. SYSGEN places this copy on tracks
1 and 2. At that point a complete CP/M disk existed for the Altair, and
only a method of booting that disk was needed. Thus a program was

created, to reside in PROM, which would first, copy the I/0 for doing a

94

disk access from the PROM down to location 3PPPH (hex address), so that
the boot could use it, and then read in track @, sector 1 from the disk,
and finally transfer control to that program.

The programs used in this step are ZERQO -- the program residing on
track P, sector 1, and ALT-ROM the program put in PROM. The source code
for these programs are attached.

4) Now that CP/M existed as a stand alone system on the Altair,
USCD Pascal could be easily implemented. Since the disk simulation pro-
gram was still available, and the BIOS for the Altair CP/M still included
the functions necessary to use it, a Pascal system disk was copied from
the soft-sectored disk that the Intel uses to the hard-sectored disk
the Altair uses. With appropriate modifications for the type of terminal
being used, Pascal was then functional.

The procedures to be used now to bring CP/M up on the Altair with
access to both its own disks and the Intel disks are as follows:

1) Set switches on box to Configuration 1.

2) Bring up CP/M in Intel.

3) Briﬁg up CP/M on Altair by executing the program in PROM located
at F8PPH.

4) Execute DISKSIM on Intel.

5) Switch box to Configuration 2.

6) Disk access is as follows:

A: Altair drive @
B: Altair drive 1
C: Intel drive 9
D: Intel drive 1.
7) The Intel CRT can be disconnected if desired and the upper

switch on the box set to the neutral or middle position.

95

Sidiinddin il mbas bbbt iniad

3 BOOTCPM PROGRAM WHICH RUNS ON ALTRIR

STADR EQU 200H
STAK EQU J0eH
ORG @F8eeH
LSET EQU 11H
SERP EQu 13H
SERS EQu 124
RBR EQU 1
THROY EQU 2
B0OT MUl A,LSET
ouT SERS
BLOOP LX1 SP,STAK
CALL GETCH
CPl ke
JNZ BLOOP
CALL GETAD *
SHLD STADR
CALL GETRD
XCHG
CALL GETRD
GLooP CALL GETCH
MOV M.A
INX H
DCX 0
MOV A,.D
ORA E
JINZ GLooP
LHLD STADR
PCHL
GETRD CALL GETCH
MoV L.A
CALL GETCH
MoV H.A
RET
GETCH IN SERS
ANI RBR
J2 GETCH
IN SERP
RET
END
96
%

e

s Ge bs b 4

F

100H

PROGRAM DISKSIM, RUNS ON THE INTEL

THIS PROGAM SIMULATES THE EXISTANCE OF R DISK.
THROUGH R PROTOCOL OVER THE LINES IT WILL
ACCESS THE DISK FOR THE REQUESTING COMPUTER.

EQU 1806H
EQU 2000H

SP, STAK
B, DBUF
SETDMA
R, ‘7

B, 130

SENDCH
8
SLOOP

GETCH

R 3
WRITETEST
GETDTS

A, ‘R’
SETDTS
READ

E.®

H, DBUF
8,128

R, 73

SENDCH

A.M
SENDCH
E

E.RA

H

3
RLOOP
A.E
SENDCH
FOLGOOP

L 1]

we

IUI
FOLOOP
GETDTS
E.0
8,128
H,DBUF

s we b

3 SEND A BAD BLOCK FIRST
3 128+ START+CS

CHECK FOR AN ‘R’

D0 CHECKSUM

SEND CSuM

IF NOT TRY RGRIN
GET URLUES FOR DISK TRK SECTOR
CHECKSUNM

97

wLooP

GETCH
M.A

H

E

E.R

B
WLOOP
GETCH
E

5 SUBTRACT CHECKSUM

BADTRANS

f, 7y’
SETDTS
WRITE
A, ‘G’
SENDCH
FDLOOP

A, ‘B4
SENDCH
FDLGOOP
2

EQU
EQU
EQU
EQU

H

B

0

PSY
IN
TXRDY
PLOOP
PSUY
CONOUT
0

B

H

CONST
RBR

GETCH
CONIN

3 SIGNAL FOR WRITE

OF7H
OF6H
©F6H

CONST

Heatofeoeafepeolesfeleofepshaieagkok gokagorok ok gogolokakfokotokokaiokagolokaokekokok

GET DTS DISK., TRACK, SECTOR

s bo G0 s W

GETDTS
CALL GETCH
STA DISK
CALL GETCH
STA TRACK
CALL GETCH
STA SECTOR
RET
3
DISK DB e
TRACK DB e
SECTOR DB 1
SETDTS -
STR PRTYPE 3 STORE R IN PRINT STRING
LOA DISK H
MOU C.A 3 PUT DISK NUM IN C FOR SELDSK
CALL CONVHEX
SHLD PRDISK
CALL SELDSK
LDA TRACK
MOU C.A 3 PUT TRACK IN C FOR SETTRK
CALL CONVHEX 3 PUT HEX VAL OF R IN HL
SHLD PRTRACK
CALL SETTRK
LDA SECTOR
MOV C.A
CALL CONVHEX
SHLD PRSECTOR
CARLL SETSEC
JMP POUT
STRING DB @AH, @DH
PRTYPE DB ‘AD=’
PRDISK DB ‘80’
PRTRACK oB ‘08’
PRSECTOR DB ‘80“
DB 6.9.0.0

3 PRINT OQUT RCCES5 STRING
POUT

LXI H,STRING

PROUTLOOP
MOV A.M
l?zm f 3 CHECK FOR ZERO
MOV C.A
PUSH H
CALL LST
POP H
INX H
JMP PROUTLOOP
CONUHEX
PUSH Psu
PUSH D
PUSH B
MOV B,RA
ANI OFH
caLL FIXNUM
MOU H,A
MOV A.B
RAR
RAR
RAR
RAR
ANI OFH
CALL FIXNUM
. LY L.A
POP B
POP v
POP PSY
RET
F IXNUM
. mx lo;
CPI ‘9’41
RM
ADI ‘R’-’8’~10
RET
100
PRRESRARST b PO P adatbin o ool Bk bl

)
]
i
i
i
i

e e e R I

[EAC AN AR NSO NG wivshin

SakakakalopafageskoR el Aok Rk okl kofokag i alokagkoRakogok sk ok sk alok otolokogsk

»
3 CPM INTERFACE ROUTINES
3
SuctondoiorioR Rtk skskolokokkokok ko lok ok okoksoiokdolololokkoR o
SELDSK: LHLD 0081H 5 GET BIOS RDDR
M1 L,1BH
PCHL
SETSEC: LHLD 8001H
Wi L.,21H
PCHL
SETTRK: LHLD ©061H
MVI L,1EH
PCHL
SETDMA: LHLD 6001H
MVI L,24H
PCHL
READ: LHLD 0081H
MVl L,27H
PCHL
WRITE: LHLD 8001H
Ml L,2AH
PCHL
HOME LHLD 8001H
MUl L,18H
PCHL
LST
RET
LHLD 1
MVl L,@FH
PCHL

Saciocmibk ook kololslokkikdklciokolksksoklolor
END '

g!
 {
i
! .
g 3 ZERO PROGRAM WHICH RESIDES ON TRACK O, SECTOR 1 j
| 5 OF ALTAIR CP/M DISK. USED TG BOGT
: 3
! ORG @
| MEMAD EQU @ASOEH 3 ADDR TO READ TRACK 1 AND 2 INTO
! DONE EQU @BAGEH 5 PLACE TO GOTO IN CP/M WHEN DONE
: LXI H,MEMAD 5 READ IN ADDRESS
XI 0.1 3 SLOCK NUMEER
! Wl C.25 3 SECTOR COUNT FOR TRACK 1
3 LOOP MWI B.0 3 DISK NUMBER
} PUSH D
| PUSH H
HERE CALL 3008H s READ R SECTOR USING CP/M BIOS i
ORA A 3 SEE IF ERROR ON READ]
JNZ HERE ; IF SO TRY READING AGRIN
POP H
LXI D,128 3 BUMP MEM RDDR ANOTHER SECTOR i
DD D |
PP D
I D 3 NEXT SECTOR
DR € 3 DONE MITH TRACK 1? :
Y
MW AE ; SEE IF DID TRACK 2
1 28
P DONE ; IF SO START CPM-ING
LXI D.32 5 ELSE START NEXT TRACK
mI C.26
P LOOP
END

102

ALT-ROM PROGRAM WHICH RESIDES IN FROM ON THE
ALTAIR AT LOCATIUN F36@, BOOTS CP/M]

G e

ROM EQU OF 300H
Loc EQU 3000H
DELTA EQU -19H 4
BEG ORG LGC+DELTA
LXI 5P, 3FFFH
LXI H, ROM-DELTA
LXI D.START
LKI B.NB
ONW MOW AN
STAX D
IN: H
INK D
DCH B
MOV A.B
ORA c
JNZ ROM+ONW-BEG ' :
Jup START2 _
START SENTPY TO RERD BLOCK IM DE,RDDR IN HL.DISK IN B %
Jnp READ SALLONS EASY IMTERFRCE TO OTHER BOOT !
START2 sENTRY TO READ TRACK @ SECTOR 1
Ml B.9
LI D.0 sTRACK @ SECTOR @
LXI H.9 SREAD INTO LOC @
Ml A.129
CALL RERD
Jnp e
RERD
SHLD DMA $SAVE DMA RDDR
m1 A.129 3NUMBER OF EVYTES TO RERD
LXI H,MYDMA 3LOC OF READ BUFFER
CALL READA 3DO DISK IO
ORA A s SEE IF ERROR
RNZ 5 IF 50 RETURM
(LD 8.0
LHLD DMA
LX1 D, MYDMA
M1 C,128
EXCH LDAX)
MOy M.A
XRA B
RRC
Moy B.R
INY D e i
INX] ¥ T"”“*
m C 1 Q\i«l&ii'i) i
N2 EXCH . A LA !
LDAX D qa“':?‘ R
103

; XRA B sCOMFRRE WITH CRC
3 INZ BADCRC

| ¥RA A $ZERO A

5 RET

| BRDCRC MUI A.9 s INDICATE BAD CRC
RET

DISK HANDLING ROUTIME FOR THE ALTAIR DISK DRIVE

ENTER AT READ OR WRITE WITH THE FOLLOWING WALUES
IN REGISTERS A.B.DE,AND HL.

REG A CONTAIMS NUMBER OF BYTES TG BE INPUT GR QUTFUT
REG B CONTAINS THE DISK DRIVE HUKEER
REG DE CONTARINS THE BLOCK KUMBER RANGING FRGM ©
TO 2453 DECIMAL
REG HL CONTRINS THE BUFFER RDDRESS WHERE DATA I35 TO
BE READ FROM OR WRITTEN TO

ALL REGISTERS ARE RETRUMED INTACT
INTERRUPTS ARE HOT RLLOWED DURING UISK I-0 AND THE -
INTERRUPTS ARE ENABLED ON RETURM

WO 4o Gs Be Ge %o 85 N0 Ga 0 Un BE 4o 4p B S0 4 Be W

1 SUBROUTIME TO EMRBLE DISK DRIVE
ENRB LXI H, TRKNM 3 POINT TO START OF TRACK TRELE ?
MOy A.B 5 PUT DRIVE WUMEER IM REG A
ENAB1 DCR A 5 INCREMENT HL 50 THAT IT WILL
‘ m ENAB2 3 FOINT TO THE CORRECT STHTUS EVTI
; INK H H
; P ENRB1 s
z ENAB2 MOU A.M s GET STATUS BYTE FOR SPECIFIED DRIVE
,} ANI 30H 3 TEST IF IT HAS BEEM IMITIRLIZED
INZ TRKO s IF HOT THEN INTIALIZE IT
! LDA DRUNM 3 GET CURRENT CRIVE HUMEER
P B 5 IS 1T THE SAME RS REQUESTED DRIVE?
; N2 ENAB3 3 IF NOT THEM ENRBLE NEW DRIVE
IN DSTATL 3 CHECK IF CURRENT DRIVE 15 ENRBLED
3 IN CASE DRIVE DUOR HAS BEEN OFENED
' AN ENBIT 3 o
} R2Z 3 RETURN IF ENRBLED ‘;r
3 ENRB3 MOV A.B 3 GET DRIVE NUMBER 8
; STA DRUNM 3 AND SAVE IT X4
! ouT DSTATI 3 ENRBLE DRIVE «<“ _ i
{ IN DSTATL 3 IS ORIVE ENRBLED NOW? & o
ANI ENBIT F &
INZ ENAB3 5 IF NOT KEEP TRYING .
RET &
A
4 .
>
i
L i
£
104

SUBROUTINE TO FIND TRACK ©

s B8 &

?
i
i
4
|
H
!
B

L\ TRKO! CALL MOVE 5 BE SURE HERD MOVE IS ALLOVED
| 3 TO GAURANTEE HERD 15 SETTLED
4 IN DSTAT1 5 GET DISK STATUS

} ANT T0BIT 3 CHECK FOR TRACK ©

3 JZ TRK@2 5 GO SET STATUS IF ON TRACK ©
} CALL OUT! 3 IF NOT @, STEP QUT

ik P TRKG1 3 CHECK AGAIN FOR TRACK @

TRKO CALL ENAB3 ENARBLE DISK DRIVE

TRK@2 MOV M.A

3 SET DISK STATUS BYTE TO IWDICATE
3 ZERO ﬂND THAT DRIVE HAS BEEN INITIALIZED

]
3 3 SUBROUTINE TO STEP HEFAD QUT
H

PR AR

ouT1 CALL MOVE
M1 A.OUTBT
ouT DCONT
RET

BE SURE HERD MOVE IS RLLOWED
GET STEP OUT COMMAND
STEP HEAD OUT

s e @y

3 SUBROUTINE TQ STEP HERD IN

3

IN1 CALL MOVE
M1 A, INBIT
ouT DCONT
RET

BE SURE HERD MOVE 15 ALLOWED
GET STEP IN COMMAND
STEP HERD IN

e we W

3
3 SUBROUTINE TO FIHND TRACK N AND SET THE
3 HERD CURRENT SWITCH 5TATUS

: 3
] TRKN MOV AN GET CURRENT TRACK NUMBER

»
cMP B 3 CHECK FOR DESIRED TRACK
r Jz STHCS 5 IF EQUAL GO SET HEAD CURRENT SWITCH
Jc MUIN 3 STEP HEAD IN IF B IS GREATER THAN A ;
MUOUT DCR A 3 DECREMENT TRACK NO 1
MoV M.A 3 AND SAVE IT ;
: CALL OUTl 5 AND STEP HEAD OUT \ j
| P TRKN 3 CHECK RGAIN FOR CORRECT TRACK) %
| WIN INR A 5 INCREMENT TRACK NO
| M.A 3 AND SAVE IT g <
! TRKN 3 CHECK AGRIN FOR CORRECT TRACK -
| 43 3 IS TRACK GT OR EG TO 437 4
A, HCS0N 3 GET HERD CURRENT ON COMMAND “r
STHC $ IF GT OR EQ TO 43 SET HEAD CURRENT SWITCH % °
A, HCOFF 5 GET HEAD CURREMT OFF COMMAND IF LT 43 ®
HCS 3 SAVE HERAD CURRENT SWITCH STATUS AN
el
=
2 .
R

,:1
»
3 SUBROUTINE TO DEDUCE TRACK FAHD SECTOR MUMEERS
3 FROM LOGICAL RECORD NUMEBER SUFFLIED BY CALLING ROUTIME
»
RECRD MOU A.E 3 GET LOW BYTE OF RECORD NUM
ANI {FH s ISOLATE LOW FIVE BITS (SECTOR FADDR)
MOU C.A 3 SAVE SECTOR FDDRESS IN C
1 MOV A.E 3 GET LOW BYTE RGAIN
. CALL ROT s ROTATE TO GET LOW THREE BITS OF TRK NUM
ANI @7H 3 1SOLATE THOSE THREE DRTA BITS
Mou B.A 3 SAVE THEM IN B
MGY A.D 3 GET HIGH BYTE OF RECURD NUM
y CALL ROT 3 JUSTIFY IT A5 RBOVE
, ANI OF3H s ZERO LOW THREE BITS
! ORA B 3 OR IN THE LOW THREE BITS
! CPI 78 3 CHECK FOR WALID TRACK
| JNC ERR1 s JUMP IF ERROR
: MOV B.A 3 SAVE TRACK NUMBER IN B
STR TEMP H
; RET
»
3 SUBROUTINE TO ROTATE THREE TIMES
\ »
f ROT RLC
‘ RLC
‘ RLC
‘% RET
! H
| 3 SUBROUTIMNE TO WAIT TILL HERD MOVE IS ALLOWED
»
MOVE IN DSTATL 5 GET DISK STRTUS !
ANI MUBIT 3 CHEC HEAD MOE BIT !
4 INZ MOUE 3 WAIT TILL MOVE IS5 RLLOWED
RET

SUBROUTINE TO SAVE REGISTERS AND INVOKE SUPPORT ROUTINES
TO PREPARE DISK FOR RERD OR WRITE

=t G w8 s W

NIT SHLD BUFRD SAVE BUFFER RDDRESS

XTHL 5 PUSH HL AND GET RETURN RDDRESS
PUSH 0 3 SAVE OTHER REGISTERS
PUSH B

PUSH PSW
PUSH H

STR BYTES
CALL ENAB
CALL RECFD
CARLL TRKN
LHLD BUFRD

PUT RETURN ADDRESS BACK ON STACK
SAVUE BYTE COUNT

ENRBLE DISK CRIVE

GET TRACK AMD SECTOR NUMBERS
POSITIOH HERD

GET BUFFER RDDRESS BACK IN HL

Ve ¥s B Ge Vo &

106

——m e me e e e ekt .

IN DSTATL 5 GET DISK STATUS
ANI HDBIT s CHECK IF HERD 15 LORDED
Jz OKAY 5 SKIP LORD IF ALRERDY LORDED
M1 A.HDBIT 3
ouT DCONT 5 LCRD HERD
OKAY LDA BYTES 3 GET BYTE COUNT
MOV D.A 3 AND KEEP IN D
oI 3 DON‘T ALLOW INTERRUPTS DURING DISK 10
»
3 SUBROUTINE TO FIND START OF DESIRED SECTOR
3
IN POS 3 READ SECTOR FOSITION STATUS
MOY B.A 5 SAVE IN B
ANI SECBT 3 TEST FOR START OF SECTOR
: INZ SEC 5 IF NOT START TRY AGAIN
! MoV A.B 3 GET SECTOR NUMEER IN ACCUM
! RAR 5 JUSTIFY IT {
! ANI 1FH 3 ISOLATE ACDRESS BITS ‘
! cHP c 5 CHECK FOR DESIRED SECTOR
: RZ 3 RETURM TO RERD OR WRITE IF CORRECT SECTOR
; P SEC : IF NOT , TRY RGAIN |
! H
} 3 ENTRY POINT TO RERD A SECTOR
L
READA CALL INIT 5 GET RERDY TO RERD
RSYN 1IN DSTATL 3 GET DISK STATUS
RAL 3 SHIFT DATA AURILRELE BIT TO CARRY
JC RSYN ; LOOP TILL DATA IS READY
IN DATA 3 READ SYNC BYTE
FB IN DSTAT1 5 GET DISK STRTUS
RAL 3 SHIFT TO CARRY
‘ Jc FB 3 KEEP LGOKING FOR FIRST BYTE
; IN DRTA 3 REFD FIRST BYTE
ROAT1 MOV E.A 3 PUT DATA IN E S0 READ ROUTINE WILL WORK
ROAT IN DSTAT1 3 GET DISK STATUS
RAL 3 SHIFT TO CARRY
| Jc RDAT 3 KEEP LOOKING FOR DATR READY
1 IN DATA 3 READ DATA
| MOU M.E 5 STORE FIRST BYTE
INX H 3 POINT T NEXT BYTE IN BUFFER
DCR D 5 DECREMENT BYTE COUNT
J2Z EXIT 3 EXIT IF DONE
MOV M.A 3 IF NOT DONE. STORE THIS BYTE IN BUFFER
INX H 3 POINT TO NEXT BYTE IN BUFFER
DCR D DECREMENT BYTE COUNT
IN DATA 3 TIME TO READ NEXT BYTE FROM DISK
INZ RDAT1 3 RERD MORE IF NOT DONE
i

107

i
& l

PR

3 ROUTINE TO LEAVE DISK HANDLER
EXIT FOP PSuW 3 RESTORE REGISTERS
POP B
POP o
POP H
XRA A .
RET 3 GO BACK TO CALLIMG ROUTINE

APPROPRIATE ERROR MESSAGE IF YOU HAVE THAT CAPABILITY

ws Se G

3

MUI A, 1 s
POP
POP
POP
POP
RET

LTOMO

STORAGE REQUIRED BY DISK HRNDLER
MAY BE ORG'D TO ANYWHERE YOU HAVE MEMORY IF
YOU WANT THE DISK FROGRAM IN FROM

Ss S0 %6 4a bs e

DRUNM DB e 3 CONTRINS CURRENT DRIVE NUMBER

TRKNM DB 86H 3 TABLE OF STATUS BYTES FOR DRIVES ©-3
DB 86H 3 STATUS BYTES ARE IMITIALY 5ET 0T 89 HEX
08 8eH 5 SO ENABLE ROUTIKE WILL IRIT DISK
OB 86H 2 DRIVES THE FIRST TIME THEY GRE USED

3 AFTER INITIALIZATION THE STATUS BYTE HOLDS THE
3 CURRENT TRACK POSITION FOR IT5S DRIVE

I ————

HCS 0B 80H 3 STRTUS FOR HERD CURRENT SWITCH

BYTES OB %) 3 TEMPORARY SRVE 5PACE FOR NUMBER
3 OF BYTES TQ BE INPUT OR OQUTFUT

DMR DU (%1% 3 SPACE FOR READ-WRITE BUFFER ACDR

BUFAD DU e 3 TEMP SAVUE SPACE FOR BUFFER FADDR

TEMP 0B 6FFH H

MYOMA EQU $+435 3 BUFFER FOR RERD AND WRITE

Attt

e B8 G Ne

EQUATES
NB EQu
DSTATY EQU
DCONT EQU
POS EQU
DATA ey
HOBIT EQU
ENBIT EQU
TOBIT EQU
INBIT EQU
OUTBT EQU
MUBIT EQU
HCSON EQU
HCOFF EQU
SECBT EQU
SYNC EQU
END

206H

we Be e Us Ga b8 Ns G V% 4y Ge N5 W W W

NUMBER OF BYTES IN PROGRAM

DISK S5TRTUS PORT

DISK CONTROL PORT

SECTOR FOSITIOM PORT

DATA PORT

HERD CONTROL AMD TEST BIT

DISK ENARBLED TEST BIT

TRACK @ TEST BIT

STEP HERD IH COMMAND

STEP HERD OUT COMMAND

HERAD MOUE TEST BIT

HEAD CURRENT SWITCH AND WRITE ENABLE
WRITE ENRBLE AND HEAD CURRENT SWITCH
START OF SECTOR TEST BIT

SYNC BYTE

109

OFF

APPENDIX B

USER'S GUIDE: THE ROTH RELATIONAL DATABASE SYSTEM

INTRODUCTION AND OVERVIEW * SECTION 1

The database system (hereafter referred to as "the system") des-
cribed in this document is a system intended to run on stand alone micro-
and mini-computers under the control of the UCSD Pascal operating system,
Version II.0. All system software is written in Pascal, resulting in
relatively straightforward software maintenance and enhancement.

The system is designed to be used primarily with a CRT terminal
as the CONSOLE device; however, the system is flexible enough to be
reconfigured for slower hard-copy terminals. The system does require
some kind of fast mass storage such as a floppy disk ;ystem or better.
The initial development of the system was done onanIntel 8080 micro-

processor with dual-drive floppy disks and an ADM-3A CRT terminal.

1.1 The Database System: An Overview

The structure of the system is best conceptualized in terms of the
"tree-1ike" structure diagram in Figure B-1.

The diagram in Figure B-1 depicts the outermost level of the system.
In terms of a "tree" or structure diagram, the "root" corresponds to the
outermost level, while the "leaves" (i.e., the triangles with no branches
to lower levels) correspond to the lower levels of the system. While a
user is in a particular level, the system displays a list of available
commands called the "prompt-line." If the system is running on a CRT
terminal, then the prompt-line will usually appear at the top of the

screen. Commands are usually invoked by typing a single character from

110

talocsscicntes JEIN oo s ancsl P WP P

wa3SAS pueWWO) ABSH [IAS|-LIINW °T1-8 a4nbL4

J\1

(]
~ SNOI 140 3
m .W m Um '
= S
s 3 i
£ _
N & - e £
C €
A\ - h% :
A
‘ G w

SNOI1d0 SNOILdO SNOILdO SNOILdO
11 $S08 :_ﬁl JAITYL3Y 1100 1103 1100 |7 NI 430

11

o&v

, SNOILdO
TImY WILSAS

3

the CONSOLE device. For example, the prompt line for the outermost level

of the system is:

Sys Options: D(efine), E(dit), R(etrieve), I(nventory),
A(ttach), Q(uit), B(oss)

>

By typing "R" the user will "descend" a level within the structure
diagram into a level called "RETRIEVE". Upon entering RETRIEVE, another
prompt-line detailing the set of commands available at the RETRIEVE level
of the system jis displayed. The Q(uit) command causes the user to exit

from RETRIEVE and "ascend" back to the outermost command level of the

system. Now the user is back at the level in the system from which he
started after initially executing the system. Some commands within the

system prompt the user for more information, such as the name of a rela-

tion, a Tine number, etc. In these cases, the user enters the required
information followed by a carriage return (<cr>). If an error is made
in typing a portion of the information, the backspace key (or equivalent
! key depending upon the system configuration) may be used to "back over"
and erase the erroneous part. If the user decides not to accept any
information at all, "escape" from most commands is by entaring zero
characters; i.e., type <cr>. Unless otherwise stated, any input to a
yes/no question besides a "Y" is considered a no.
Sometimes there are more commands available than would be reasonable
‘ to display at one time. When this is true, a question mark (?) will
appear at the end of the line. Typing "?" will cause a different prompt

i to appear, such that more of the available commands will be displayed to

the user.

1.2 OQutermost Level Commands: An Qverview

A. D{efine)

Typing "D" while at the outermost command level of the system
causes the DEFINE segment to be brought into memory from disk. The
user may, while in DEFINE, define domains and relations, and perform
formatted input/output operations between mass storage and relations.

See section 2 for details.

B. E(dit)
"E" places the user in a level of the system called EDIT. This
section of the system contains commands used primarily for maintenance

of relations. See section 3 for more details.

C. R(etrieve)
This command allows the user to formulate and execute relational
queries on the database relations, and display the results. A workfile
is used to hold queries, and commands include "getting", "saving",

"editing", and "executing" this workfile. See section 4 for more details.

D. I(nventory)
Typing "I" at the SYSTEM level will cause a list of the domains
which have been defined and a 1ist of the relations which have been

defined and attached (see E below) to be displayed on the CONSOLE.

E. A(ttach)
Type "A" at the SYSTEM level to enter ATTACH. The user is then
prompted for the relation to attach. Currently only an attach flag is
set in the relation definition. ATTACH will, in the next version, also

request security passwords from the user if he does not own the relation.

113

(Refer to section 2 for explanation.) Relations must be attached before

anything can be done with them.

F. B(oss)
This module is avaialablg only to the database administrator (DBM).

It provides special commands such as initialization. See section 5 for

more details.

1.3 Starting the System

The system is started by executing the code file DATABASE.CODE. The
disk which contains this file must remain on-line during the execution of
the system, in order to permit segment swapping.

Upon execution of the system, a welcome message is displayed and the
user is asked to enter an identification name. This name is associated
with all relations created by the user and is maintained as part of the
security system. The user is then asked if his system has 1 or 2 disk
drives. If 2 drives is indicated, then the domain and relation definitions
are assumed to exist on the disk in Drive 1, on a file called SETUP.DATA,
else Drive P is assuméd to contain the disk with SETUP.DATA. If all goes
well, the system prompt-line is displayed; otherwise an error message is
generated.

The database manager identifies himself with a special identification

name. The DBM can create a file called SETUP.DATA if one does not exist.

1.4 Key Words and Names

Names in the system; e.g., relation names, attribute names, etc.,

may be any combination of 1 to 89 non-blank characters. Although not ﬁ
guaranteed to be harmful, user defined names should not be any of the

following key words:

114

|
ALL DIVIDE JOIN PRODUCT UNION
AUG FROM MAX PROJECT VETO
BY GIVING MIN SELECT WHERE
COUNT IN ONE SORT $63
DIFFERENCE INTERSECT OVER SUM

e AP - ¢

e

115

|

DEFINE PROCEDURES * SECTION 2

Type "D" at the SYSTEM level to enter DEFINE and the following prompt
is displayed:
1} DEFINE DOMAINS
DEFINE A NEW RELATION
(3) INPUT FROM MASS STORAGE
(4) OUTPUT TO MASS STORAGE
(5) QuIT

SELECT 1 = 5 ===

The individual DEFINE commands are invoked by typing the number to
the left of the parenthesis. For example, "1" would invoke the DEFINE
DOMAINS command.

2.1 1) DEFINE DOMAINS

Defines domains to be used in defining relations. The user is
prompted to enter the domain name, the type of domain; i.e., Character,
Integer, or Real, and the number of characters or digits to be allowed.
The domain name must be unique. If other than digits are entered when
required, then P is assumed; and if the maximum integer size of the
machine is exceeded then the maximum integer is used. All yes/no ques-

tions must be answered with a "Y" or "N".

2.2 2) DEFINE A NEW RELATION

Define a new relation to consist of the following parts, each
prompted for individually:

Relation Name -- must be unique

Attribute name/domain name pairs -- attribute names must be unique

within the relation, domain names must have been previously defined.
The user is also asked if a sorted directory is to be maintained for

each attribute.

116

aslindiiiiniol FOw i i T o) T e

2.3

Primary key(s) -- the number of keys is entered, and then each attri-

bute to be a key is entered. The attribute must have been defined
and if a duplicate is entered, the user is allowed to prematurely
quit specifying keys. This exists to allow the user some way to
quit when he has entered a number larger than the total number of
attributes.

Security passwords -- the ID password is automatically set to the

jdentification name and the user is allowed to enter security pass-
words for:

READ -- prevents display of or relational operations on the

relation.

DELETE -- prevents deletion of any or all tuples.

MODIFY -- prevents modification of any tuple.

INSERT -- prevents insertion of any new tuples.
Constraints -- the user is allowed to specify constraints on the
attributes of this relation. These are used to further restrict the
domain of an attribute. The constraint can be of the form:

>
attribute{<lva1ue

or
attribute = (valuel, value2, value3, . . ., valueN).

Multiple constraints can exist on an attribute.

3) INPUT FROM MASS STORAGE

This command has not yet been implemented. Its purpose is to read

in data from disk file into a relation, specifying the format of the

data.

Data which is incompatible with the domain type or constraints of

the relation attributes should be flagged as an error, and non-unique key

values should also be flagged.

117

k. PPN O} EX I PR TP ., W T U4

oy fijamdiatibidliiisadailoonnda i Sl
§ 2.4 4) OUTPUT TO MASS STORAGE
4
This command has not yet been implemented. Its purpose is to write
: data in a relation to disk or to a printer in a particular format.
h
i
|
!
1
E
i
i ‘
X
118
4 {)] ;
—_ —~ — m— . — l:r:“;'

© e e —pr——a e e o

S0 Badib Attt n gt . g

=y e s

EDIT PROCEDURES * SECTION 3

Type "E" at the SYSTEM level to enter EDIT and the following line is
displayed:

Edit Options: I(nsert), D(elete), M(odify), S(ave), R(esort), Q(uit),?
>

Typing "?" in response to this prompt displays more EDIT commands:

More Edit Options: C(opy), S(elect), P(assword), R{ename), Q(uit)
>

The individual EDIT commands are invoked by typing the letter found
to the left of the parenthesis. A1l EDIT commands have yet to be imple-

mented; but a description of each is given here.

3.1 I(nsert '

Insert a tuple into a relation. The key value(s) must be unique in
the relation and values must be in the domain and satisfy constraints of
each attribute. The relation must have been attached and the INSERT pass-

word (if any) specified if the relation is not owned by the user.

3.2 D(elete)

Delete tuples from a relation. A single tuple may be deleted by
specifying its key value(s) or a set of tuples if values are specified
for one or more other attributes. When doing multiple deletes a VETO
option exists to allow the user to individually decide on the deletion
of each tuple. The relation must have been attached and the DELETE pass-

word (if any) specified if the relation is not owned by the user.

119

b e T

St

3.3 M(odify)

Modify tuples of a relation. The tuples to be modified are speci-
fied by giving values for any or all of the attributes. Then the values
for the attributes to change are specified, a blank value indicating that
the old value should remain. A VETO option similar to that in the D(elete)
command also exists for M(odify). The relation must have been attached
and the MODIFY password (if any) specified if the relation is not owned

by the user.

3.4 S(ave)

Save newly created relations; i.e., those created as a result of
relational operations on other relations (see section 4). The user can
specify security passwords and integrity constraints on the relation,

with tuples violating the constraints being deleted with user approval.

3.5 R(esort)

Sort the tuples of a relation. The relation must have been attached
and the READ password (if any) specified if the relation is not owned by

the user.

3.6 C(opy)

Copy a relation into another with the ability to change attribute
names and the domains they are defined on. The copy will specify the
mapping between attributes. If the domain type of an attribute in the
receiving relation is incompatible with the data values of the attribute
it is receiving then an error is reported and the COPY aborted. The only
transformation of type allowed is integer to real. Key attribute(s) in

the receiving relation must receive unique values. The relation being

120

copied must be attached and the READ password (if any) specified if the
relation is not owned by the user, and the receiving relation must have

been defined.

3.7 S(elect)

Select a tuple from a relation satisfying a specific constraint or
perform a function on the relation. The tuple selected can be:

-- any tuple
-- one in which an attribute has either a maximum or minimum value.

The functions include:
--COUNT(attributel, . . ., attributeN) which will give a numerical count
of the unique occurrences of the attributes 1isted.
--SUM(attribute) will give the sum of the value in each tuple of attribute.
--AUG(attribute) will give SUM(attribute) divided by the total number of
tuples in the relation.
SUM and AUG must have integer or real arguments.
The relation must be attached and the READ password (if any) speci-

fied if the relation is not owned by the user.

3.8 P(assword)

Change the security passwords of a relation attached and owned by

the user.

3.9 R(ename)

Change the relation name and/or attribute names of a relation

attached and owned by the user.

RETRIEVE PROCEDURES * SECTION 4

Type "R" at the system level to enter RETRIEVE and the following

prompt line is displayed:

Retrieve ops: G(et), S(ave), E(dit), X(ecute), D(isplay), Q(uit)

>

A concept central to the operatinn of RETRIEVE is the command file.

A command file contains one or more relational queries. The command
file can be created, modified, stored on disk, retrieved from disk, and
executed. The commands which can reside in a command file are described
below. Several examples are provided after that.

A. Union of two relations:

UNION relationl, relation2 GIVING relation3

where the first two relations must be union-compatible; that is,
they have the same number of attributes and the ith attribute of one

relation must be drawn from the same domain as the ith attribute of the

other relation. Relation3 will acquire the attribute names of relationl.

Relations 1 and 2 must have been attached and the READ password (if any)
specified if the user does not own the relation, and relation3 must be
unique.

B. Intersection of two relations:
INTERSECT relationl, relation2 GIVING relation2

where all restrictions under UNION apply.

122

C. Difference or relative complement of two relations:
DIFFERENCE relationl, relation2 GIVING relation3

where relation3 = relationl - relation2. All restrictions under -
UNION apply.

D. Cartesian product of two relations:
PRODUCT relationl, relation2 GIVING relation3

where attribute names in relation3 will be the same as those in -
relation 1 and 2 except that duplicate names will be prefixed by the
name of the relation it came from. Relations 1 and 2 must have been ’7
attached and the READ password (if any) specified if the user does not
own the relation, and relation3 must be unique.

E. Join of two relations:
JOIN relationl, relation2 WHERE attrl op attr2 GIVING relation3

where attrl is in relationl and attr2 is in relation2, op is =,
<, >. The JOIN operation is a subset of the cartesian product where the
condition of membership is specified in the WHERE clause. All restric-
tions under PRODUCT apply. ;

F. Project a relation over a subset of its attributes:

PROJECT relationl OVER attrl,attr2, . . .,attrN GIVING relation2

where attributes not specified in the OVER clause will be elimin-
ated and any duplicate tuples will be eliminated. Relationl must have
been attached and the READ password (if any) specified if the user does

not own the relation, and relation2 must be unique.

123

v
-

G. Select a subset of tuples from a relation:

SELECT ALL FROM relationl WHERE condition GIVING relation2

where condition is a boolean predicate on the attributes of
relationl of the form al AND/OR a2 AND/OR a3 . . ., where each aN is of
the form attribute op value, where op is =, <, or>. The expression may
be fully parenthesized to indicate the proper precedence of the operators,
but if not then AND has precedence over OR. One or more blanks or commas
must be between each part of the command except that the left parenthesis
may be flush against an item to its right, and the right parenthesis may
be flush against an item to its left. Relationl must have been attached
and the READ password (if any) specified if the user does not own the
relation, and relation2 must be unique.

H. Divide a binary relation by a unary relation:
DIVIDE relationl BY relation2 OVER attrl GIVING relation3

where relationl is a binary relation, relation2 is a unary relation,
and attrl 1is an attribute of relationl defined on the same domain as the
attribute in relation2. Relation3 will be a unary relation with attribute
from relationl not attrl. Relation 1 and 2 must have been attached and
the READ password (if any) specified if the user does not own the relation,

and relation3 must be unique.

Examples: The following relations are used as the basis for examples:

124

s A N

S R

BE SO - O - =SR]

" ——

SR = 3

!l
]

Relation: part, Key: part#

part#

56
78
79
100
711
899
1245

name location
wheel Miami
cam Boise
tire Boise
seat Dayton

fender Miami
clock Enon

light Boise

Relation: shipment, Key:(part#,supply#)
color part# supply# quantity
silver 78 4567 890
red 100 45 900
black 100 546 50 :
green 100 4567 435 ;
black 899 2309 1000
red 899 4567 13
silver

Relation: shippart, Key: part#

part# name location color
78 cam Boise red
100 seat Dayton green
899 clock Enon red

1000 cap Dayton blue

Using these relations examples of the output of the above commands is

shown beneath the command.

UNION shippart, part GIVING upart

upart

part# name location color
56 wheel Miami silver
78 cam Boise red
79 tire Boise black
100 seat Dayton green
711 fender Miami black
899 clock Enon red

(cont'd on next page)
125

part# name location color

1000 cip Dayton blue
1245 light Boise silver

INTERSECT shippart, part GIVING ipart

ipart

part# name location color
78 cam Boise red
100 seat Dayton green
899 clock Enon red

DIFFERENCE shippart, part GIVING dpart

dpart
part# name location color
1000 cap Dayton blue

PRODUCT shipment, dpart GIVING ppart

ppart

color

shipment-part# supply# quantity dpart-part# name location

78 4567 890 1000 cap Dayton
100 45 900 1000 cap Dayton
100 546 50 1000 cap Dayton
100 4567 435 1000 cap Dayton
899 2309 1000 1000 cap Dayton
899 4567 13 1000 cap Dayton

126

blue
blue
blue
blue
blue
blue

TS

JOIN part, shipment WHERE part# = part# GIVING shipment-descriptio

shipment-description

n

part-part# name location color shipment-part# supply# quantity
78 cam Boise red 78 4567 890
100 seat Dayton green 100 45 900
100 seat Dayton green 100 546 50
100 seat Dayton green 100 4567 435
899 clock Enon red 899 2309 1000
899 clock Enon red 899 4567 13

PROJECT shipment-description OVER color, supply# GIVING c-and-s
c-and-s

color supply#

green 45
green 546
green 4567
red 4567

SELECT ALL FROM part WHERE location = Miami GIVING parts-in-Miami
parts-in-Miami

part# name location color

56 wheel Miami silver

711 fender Miami black

SELECT ALL FROM shipment WHERE (supply# > 4000 AND quantity < 800)

GIVING s-q

s-q

part# supply# quantity
100 4567 435
899 4567 13

127

N

X

™

PROJECT shipment OVER part#, supply# GIVING ps#

ps#
part# supplyf
78 4567
100 45
100 546
100 4567
899 2309
899 4567

PROJECT s-q OVER supply# GIVING s#
s#

supply#
4567

DIVIDE ps# BY s# OVER supply# GIVING p#
p#
part#
78
100
899

Each RETRIEVE command may be split between two or more lines in the
command file if the split is made at a key word. For example, some of

the ways the last command in the examples above could be split is as

follows: 1
DIVIDE ps# DIVIDE ps# BY s# DIVIDE ps# BY s# OVER supply#
by s# over supply# GIVING p#
OVER supply# GIVING p#
GIVING p#

128

The commands may be combined in any sequence to formulate one or
more queries. For example, the query "Find the colors of all parts
supplied by any supplier in quantity > 500" can be expressed as:

SELECT ALL FROM shipment WHERE quantity > 500 GIVING T1

JOIN part, T1 WHERE part# = part# GIVING T2
PROJECT T2 OVER color GIVING answer

The query is created and executed within a command file via the commands

available at the RETRIEVE level.

4.1 G(et)

Get a command file from disk into the workfile. A workfile is simply
a command file in memory. If the current workfile is not empty then the
user must decide whether or not to throwaway the current workfile before

getting another.

4.2 S(ave)

Save the workfile as a command file on disk. If a previous command
file was obtained using G(et) the user is asked if he wishes to save the
workfile with the same name. If a file already exists on the disk with
the same name, the user must decide whether or not to destroy the file
on disk before saving the workfile. If there is no room on the disk an

error message is generated.

4.3 E(dit)
Typing "E" at the RETRIEVE level causes the following prompt-line

to be displayed:

Edit ops: I(nsert), D(elete), B(egin), P(age), Q(uit) --->

vl S ik et 2T B i il

e

Edit is used to create and modify command files while they are in
the workfile. After execution of each Edit command except P(age) the
first 20 or fewer lines of the command file is displayed on the screen,
preceded by a line number.

4.3.1 I(nsert)

Insert one or more lines into the workfile. If a workfile exists
then the user is prompted for a line number after which the new lines
should be entered. An entry of Pindicates before the first line and a
line number greater than the last line number indicates after the last
line. If a line in the file is specified, that 1ine is displayed at the
top of the screen and the user allowed to insert lines until only a
return is entered. The workfile is renumbered after the insertion.

4.3.2 D(elete)

Delete a line from the workfile. The workfile is renumbered after
the deletion.
4.3.3 B(egin)

Display the first 20 or fewer lines of the workfile.
4.3.4 P(age)
Display 20 or fewer lines starting at a particular line number of

the workfile.

4.4 X(ecute)

Execute the command file in the current workfile. If syntax
errors are found in the file, they are reported to the user. This
causes execution to be aborted; however, the user can indicate that
the syntax of the rest of the file is to be checked for syntax errors

while ignoring the command in which the error occurred.

130

-

e

st 5 Y T TR

7

D . s -

—— " ‘ T e , o " . c

Each query of the command file is executed and the result is put
into the temporary relation specified by the user in the‘query. If the
query is determined to do nothing, such as the union of a relation with
itself, then the query is not executed and this fact is reported to the
user.

Currently only the low-level procedure calls necessary to perform

each query are output.

4.5 D(isplay)

Display the contents of a relation on the screen.

When quitting the RETRIEVE level, the user must decide whether or not to

throwaway the current workfile, if one exists.

131

BOSS PROCEDURES * SECTION 6

If the user has logged on with the special DBMID as his identifica-
tion name, then access is allowed to the BOSS procedures as well as special
; priviledges throughout the system. The following commands are currently

available in BOSS:

“"E" -- exit BOSS.
’ *“I" -- Inventory, same as that at the SYSTEM level.
? "Z" -- Initialization of the system, which currently deletes all
’ domain and relation definitions in memory. SETUP.DATA
h will also be initialized if the user quits the system in
E this configuration. !
E When logging on with the DBMID, all relations are automatically ﬂ
E

attached and presumed owned by the user.

CHANGING THE SYSTEM * SECTION 7

Please refer to sections 3.3.1 and 3.3.2 of the UCSD Pascal Version
I1.0 reference manual and current program listings before trying to change
the system.

The program is currently divided into a main body segment, four
segment procedures and a unit. Each segment is contained in a dummy pro-
gram in order to permit separate compilation. The unit contains all types,
variables, and procedures which are global to more than one segment. Thus,
by including the unit in each dummy program, access is allowed to those
elements. The format for each segment procedure is:

PROGRAM dummy-name;
USES COMMON; (*the unit is named COMMON*)
SEGMENT PROCEDURE name(parameter-list);
Local types, variables, and procedures;
BEGIN
body of name;
END; (*name*)
BEGIN
END. (*dummy name*)

Since the segments are separately compiled, the parameter list of
the segment procedure, must contain all global variables accessed or
modified by the procedure. The program or segment procedure which calls
for each segment procedure must have a dummy segment procedure with the
same name, so that it may compile properly. The format for the main
body segment is:

PROGRAM main;

USES COMMON;

local labels, types, constants, and variables;
SEGMENT PROCEDURE namel(---);

BEGIN

END; (*namel*)

SEGMENT PROCEDURE name2(---);

BEGIN

END; (*name2*)

133

|

other local procedures;
BEGIN

body of main;
END. (*main*)

The format for segment procedures which use other segments is the

same as the previous format for a segment procedure except dummy segment

By SO SR

procedures are included as local procedures.

Each segment procedure has a particular segment number from 11 to

15 associated with it. The main body segment has number 1 and the unit

has number 1f. Other numbers are for Pascal use only. The way numbers

e e ot ettt i i . i et

are assigned to the segment procedures is in first compiled, first

namel would be assigned 11, name2 assigned 12, etc. Therefore, in each

|

|

,!

i numbered order. Thus, in the above format for the main body segment

I

|

i dummy program used to define a segment procedure an appropriate number

of dummy segments must exist before the defined segment to ensure that

the segment count is the same. Thus, for example, the format for segment
name2 would be:

PROGRAM dummy name;

USES COMMON;

SEGMENT PROCEDURE dummy namel;

BEGIN

END; (*dummy namel*)

SEGMENT PROCEDURE name2(---);
local labels, types, etc. }

BEGIN _
body of name2 :

END; (*name2*) ,

BEGIN :

END. (*dummy name*) '

The unit -- COMMON -- is compiled and placed in the system library
using the 1ibrarian program, LIBRARY.CODE. (See section 4.2 of the UCSD {
Pascal manual.) When each program is compiled, the unit is retrieved 1
from the system 1ibrary and used in the program; however, each program |

must still be linked with the system library in order to bind the external

? variable and procedure references into the unit. After each program is
compiled and linked, then the librarian may be used to put all the seg-
ments together into one code file. Each code file containing the seg-
ment is retrieved and linked into the proper space using its assigned

% segment number into the overall file.

E If a particular segment, including the main body segment, is to
1 be changed then the steps to be followed are:
1) Change the source code for the segment.

2) Compile the program containing the segment.

4) Using the librarian create a new overall file passing all
unchanged segments to the new file and linking in the changed
segment.

{

i

t% 3) Link the code file to the system library.

|

|

|

|

If the unit has to be changed then after compiling it and placing

it into the system library, each program must be recompiled, linked to

the system library, and then put together with the librarian.

T ——

135

i

rff;;_“

APPENDIX C

BASIC PROCEDURES FOR IMPLEMENTING

CODD's RELATIONAL ALGEGRA (REF 12)

These procedures are designed on the following assumptions:

1. The permanent relations stored in the database (i) may or may not be
stored in sort order on one domain, and (ii) may have no directories at
all, or may have several directories over different domains.

2. Directories are small in size compared to relations.

3. The number of secondary storage page accesses can generally be reduced
by analysis of directories to determine those pages containing tuples satis-
fying a given condition.

4, Temporary relations produced during expression evaluation may be either
stored in their entirety or piped via a small buffer.

5. The number of page accesses will be minimized by always processing a
stored relation in sequential order and making maximum use of each page
while it is in main memory.

6. The execution of each procedure should be extravagant in neither time
nor space.

The basic procedures are as follows.

1. PROJECT1 (Relation, domainset)
(Assumption: domainset contains the primary key domains of Relation)

Tuples from Relation are processed in the order of supply and only
the domains on domainset are preserved in each output tuple.

2. PROJECT2 (Relation,domainset))
(Assumption: Relation will be supplied sorted on some domain in domainset.)

Tuples from Relation are processed in the order of supply and only the
domains in domainset are preserved in each output tuple. A1l tuples having
a given value on the sort domain are checked for duplicates before output

tuples are piped upward.
3. PROJECT3 (Relation, domainset, sortdomain)

Tuples from Relation are processed to simultaneously remove domains not
in domainset and to sort the resulting tuples on sortdomain; in the sorting
process duplicates are removed. Output is piped upward.

136

Lol o

4. SELECT (Relation, condition)
(Assumption: condition is a boolean expression of restriction and selec-
tion predicates on the domains of Relation).

We will say a subexpression is "resolvable" if pointers to all and
only tuples satisfying the subexpression can be determined by directory
analysis. Ths "resolution" of a subexpression is such a set of pointers.

The resolutions of all resolvable subexpressions in condition are
determined. If the whole expression is resolvable, its resolution is
sorted. Tuples referenced by the resolution are accessed sequentially
and piped upward. Otherwise, by directory analysis alone, a "minimal”
set S is constructed which contains pointers to at least all tuples satis-
fying condition. S is sorted. Each tuple referenced by S is checked for
satisfaction of condition. This can be done by using known subexpression
resolutions, direct checks of tuple values or both. Tuples satisfying
condition are piped upward. More details for implementing these algorithms
may be found in (1).

5. JOIN1 (Relationl, domainl, =,domain2, Relation2, Unary Relation)
(Assumption: Either Relationl or Relation2 is unary. Unary Relation
states which of the two relations is unary.)

For purposes of exposition we assume that Unary Relation is Relationl -
the other case is symmetrical. If Relation2 does not have a directory
(say D) over domain2 then one is created. For each value in Relationl, D
is searched to find pointers to tuples in Relation2 which have the same
domain2 value. These pointers are stored in a set P. P is sorted into
address order. Tuples referenced by P are accessed sequentially. Each
tup]edis concatenated with another copy of its domain2 value and piped
upward.

6. JOIN2 (Relationl, domainl, = , domain2, Relation2)

If Relationl and Relation2 are not already sorted on domainl and
domain2, then they are sorted appropriately. Relationl and Relation2 &re
accessed sequentially looking for tuple pairs satisfying the condition
domainl in Relationl = domain 2 in Relation2). Access is advanced along
Relationl or Relation2 depending on a comparison of domainl and domain2.
Tuple pairs satisfying the condition are concatenated and piped upward.

7. JOIN3 (Relationl, domainl, condition, domain2, Relation2, Sort Relation)
(Assumption: Sort Relation is either Relationl or Relation2. This para-
meter specifies which input relation is to be stored in sort order on its
"joining" doma;n. The other input relation will be piped. Condition is

<, < > or>.

For exposition purposes let us assume that Sort Relation is Relationl -
the discussion for the other case follows from symmetry. If Relationl is
not already sorted on domainl then it is sorted accordingly. If a direc-
tory (say D) is not available for Relationl over domainl, then one is
created. Relation2 is input and the value of each tuple over domain2 is
determined. The directory D is consulted to locate the beginning/end
point of tuples which satisfy the condition.

137

¥ Y) N
' ———— - ’)) s en N P ——— i ——

(domainl in Relationl condition domain2 in Relation2)

Since Relationl is sorted on domainl, these tuples can be accessed sequen-
tially. Each tuple satisfying the above criterion is concatenated to the
tuple from Relation2 and piped upward.

8. UNION1 (Relationl, Relation2)
(Assumption: Relationl and Relation2 are both sorted over a common domain.)

Relationl and Relation2 are merged together and duplicates are removed.
Qutput is piped upward.

9. UNION2 (Relationl, Relation2)
(Assumpgion: Relationl and Relation2 both have directories over a common
domain.

Select a domain over which both relations have a directory. From these
directories obtain a 1ist of pointers (P) to tuples which are potentially
in the intersection of Relationl and Relation2. Pipe upward tuples in one
relation (say Relationl), copying all tuples which are in the potential
intersection into a relation I. Now pipe upward tuples in Relation2 pulling
out those that are in P and testing them for membership in I. Those tuples
already present in I are discarded.

10. UNION3 (Relationl, Relation2)

(Assumption: Relationl and Relation2 have a common domain, such that Rela-
tionl has a directory over this domain and Relation2 is sorted over this
domain, or vice versa.)

Select a domain D satisfying the above assumption. Assume Relationl
has the directory over D. Pipe upward tuples ir Relation2 copying out
into temporary relation I those tuples whose D values occur in the directory
for Relationl, and maintain a list of pointers (P) into the directory to
those values which occur in Relation2. Now pipe upward tuples in Relationl
filtering out tuples pointed to by P and which occur in I.

11. UNION4 (Relationl, Relation2)

If neither Relationl or Relation2 have a directory then one is created.
The procedure is then similar to UNION3 except a binary search on the
directory is necessary to create I and P.

12. INTER1 (Relationl, Relation2)
(Assumption: As in UNION1.)

The relations are merged and only common tuples are piped upward.
13. INTER2 (Relationl, Relation2, Order Relation)
(Assumption: As in UNION2. Order Relation is either Relationl or Relation2,
and determines whether the output is ordered as Relationl or as Relation2.)

The general operation is similar to UNION2. If Order Relation is
Relation2, then the first pass is made through Relationl to create I and P.

138

The next pass is through Relation2 and only those tuples occurring in I
are piped upward.

14. INTER3 (Relationl, Relation2, Order Relation)
(Assumption: As in UNION3. Order Relation is as described in INTER2.)

The general operation is similar to UNION3. The first pass is always
made through the relation without a directory over the common domain.
Order Relation determines whether, on the pass through the relation with
a directory, output occurs directly when common tuples are found or sub-
sequently by passing up common tuples in I.

15. INTER4 (Relationl, Relation2, Order Relation)

The general operation is similar to UNION4. Order Relation determines
the output order as in INTER3.

16. DIFF1 (Relationl, Relation2)
(Assumption: As in UNION1.)

Relation 1 and Relation2 are merged and only those tuples in Relationl
not found in Relation2 are piped upward.

17. DIFF2 (Relationl, Relation2)
(Assumption: As in UNION2.)

The general operation is as in UNION2. The first pass is always made
through Relation2 to create I. Tuples are only output on the second pass
when Relationl is checked against I via P.

18. DIFF3 (Relationl, Relation2)
(Assumption: As in UNION3.)

The general operation is as in UNION3. If Relationl has the directory
then tuples are output only on the second pass when Relationl is run off
against I via P. However, if Relation2 has the directory, then tuples
which are not in the potential intersection are output on the pass through
Relationl. When Relation2 has been run off against I, additional tuples
which are not in the real intersection are output.

19. DIFF4 (Relationl, Relation2)
(Assumption: As in UNION4.)

The general operation is similar to UNION4. The discussion in DIFF3
concerning output applies here also.

20. CARPROD (Relationl, Relation2, Order Relation)
(Assumption: Order Relation is either Relationl or Relation2 and determines
whether the output has the same order as Relationl or Relation2.)

If Order Relation is Relationl, then Relation2 is stored. For each

tuple in Relationl a complete pass of Relation2 is made; each tuple is
concatenated to the Relationl tuple and the result is piped upward.

139

ot 3 e

1

{

: If Order Relation is Relation2, then the roles of Relationl and Rela-
’j tion2 are reversed.
f
|

: 21. DIVIDE (Relationl, D.Setl, D.Set2, Relation2, SortD)

1 (Assumption: If Relationl will be supplied sorted on some domain in the

‘ complement of D.Setl then SortD = "SO0" (stored order). Otherwise, SortD
will be some domain in the complement of D.Setl, and this domain will
determine the output sort order.)

{
| Project the D.Set2 domains from Relation2 and store the Relationl on
1 SortD. Scan Relationl sequentially and examine each block of tuples con-
{ taining the same value in the sort domain. If all tuples in T occur in
the D.Setl domains of a block associated with the same tuple t in the
l non-D.Setl domains, then output t. Find and output all instances of t
; in the block. Repeat for all blocks in Relationl.

140

RO

aen

VITA

Mark Roth was born August 12, 1957 at Elgin, I11inois. He attended
Fenton High School at Bensenville, I1linois, graduating June 1975. He then
accepted a four-year ROTC scholarship to attend Il1linois Institute of
Technology, graduating a year early in May 1978, with a B.S. in Computer
Science, and a commission in_the USAF.

He was immediately selected to attend the Air Force Institute of

Technology. On December 15, 1979, he graduated with an M.S. in Computer
Science.

He is a member of IEEE Computer Society and the ACM.

Permanent Address: 4N650 Church Road
Bensenville, IL 60106

L
A
=
Xl

UNCLASS I FIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dm.‘Ennrnd)‘

REPORT DOCUMENTATION PAGE R D N R NN

BEFORE COMPLETING FORM
T REPORT NUMBER T2 GOVT ACCESSION NO| 3. RECIFIENT'S CATALOG NUMBER
AFIT/GCS/EE/79-14
4. TITLE (and Subtitle) e 5. TYPE OF REPORT & PERIOD COVERED

Teie DESIGN AND IMPLEMENTATION OF A FEDAGOGICAL

RELATIONAL DATABASE SYSTEM

6. PERFORMING O3G. REPORT NUMBER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
Mark A. Roth
2LT USAF
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
Alr Force Institute of Technology (AFIT/EN)

wright-Patterson AFB Ohlo 45433

11, CONTROLLING OFFICE NAME AND ADDRESS t2. REPORT DATE

15 DEC 1979

13, NUMBER OF PAGES

151

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repor.)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

P R B
J.PJ Hlpps, Major) USAF
Director of Public Affalrs

Approved for pgb‘llc release; AW AFR 190417

19, KEY WORDS (Continue on reverss side if necessary and identify by block number)
Relational Databases

Computers and Educatlion

Query |language

Query optimization

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A relational database system was designed with the goal of obtaining as near
optimal behavior from the system as possible. In addition, the database was

to be Implemented as a general purpose system but with specific provisions for
teaching database management and manipulation. Toward these goals, Investiga-
tions were made Into previous studies In the literature. The advantages and
disadvantages of relatlonal systems wre explored, and based on certain criteria
a relational algebra was chosen as the basis for the data monipulation and

DD ,7on'5s 1473 E€0ITiON OF 1 NOV 65 1S OBSOLETE UNCLASS | FIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) ‘

e o o i T ettt S

i
1
i
4

E UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- 1

definltion language. Solutions to the problems of relational databases,
Including Integrity, redundancy, and efficiency, were presented In this
context, With this background, a top-cdown structured deslgn of the systew
was completed. Techniques used to manags data entry, l.e., the user inter-:
face, and techniques to transform those liputs In order to optimlize their
exacution were deveoped and lmplemented. These transformstions formed the
basls of an automatic programmer used to analyze and efficientiy refine high
level query specifications supplied by the user. Thils spproach sought to
minimize query response time and space utillzation by: (1) performing gilobal
query optimization, and (2) coordlnating sort orders In temporary relations.

i i aotpeh it aimitoi G s iaotit o <1

N el

s

i

UNCLASSIFIED : :

- B ‘ SECURITY CLASSIFICATION OF Tu'c PAGE(When Data Entered) '

